Matematika Diskrit Himpunan Sri Nurhayati.

Slides:



Advertisements
Presentasi serupa
Matematika Diskrit (Solusi pertemuan 6)
Advertisements

Matematika Diskrit Dr.-Ing. Erwin Sitompul
BAB II HIMPUNAN.
Pertemuan I-III Himpunan (set)
Waniwatining II. HIMPUNAN 1. Definisi
Himpunan.
MATEMATIKA BISNIS HIMPUNAN.
Matematika Informatika 1
Bahan kuliah IF2120 Matematika Diskrit
KONSEP DAN OPERASI HIMPUNAN
BAB 1 HIMPUNAN Bagian 2.
MATEMATIKA BISNIS BY : ERVI COFRIYANTI.
LOGIKA MATEMATIKA PERTEMUAN 2 HIMPUNAN II
Teori Himpunan (Set Theory)
BAB II HIMPUNAN.
MATEMATIKA DISKRET PERTEMUAN 2 HIMPUNAN
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit bab 2-Himpunan
HIMPUNAN Rani Rotul Muhima.
Pertemuan ke 4.
DPH1A3-Logika Matematika
HIMPUNAN.
Bahan kuliah Matematika Diskrit
Oleh : Devie Rosa Anamisa
Pertemuan ke 4.
MATEMATIKA DISKRIT PERTEMUAN KE 2 SAFITRI JAYA, S.Kom, M.T.I
TEORI HIMPUNAN sugiyono.
Matematika Diskrit bab 2-Himpunan
LOGIKA MATEMATIKA PERTEMUAN 1 HIMPUNAN I
Pendahuluan (Himpunan dan Sub himpunan)
Bahan kuliah Matematika Diskrit
BAB 1 Himpunan
BAB II HIMPUNAN.
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN MATEMATIKA EKONOMI 1.
Himpunan Citra N, MT.
Matematika Diskrit (1) Himpunan.
Himpunan Himpunan adalah kumpulan objek-objek yang berbeda.
Matematika Diskrit bab 2-Himpunan
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
BAB II HIMPUNAN.
IF34220 Matematika Diskrit Nelly Indriani W. S.Si., M.T
Teori Himpunan (Set Theory)
Pertemuan III Himpunan
Mata Kuliah: MATEMATIKA DISKRIT Harni Kusniyati
Matematika Diskrit Himpunan
BAB II HIMPUNAN.
HIMPUNAN Himpunan : kumpulan benda atau objek yang didefinisikan secara jelas. Kelompok berikut yang merupakan himpunan adalah : 1. Kelompok siswa cantik.
Himpunan (Lanjutan).
HIMPUNAN.
HIMPUNAN Dasar dasar Matematika aderismanto01.wordpress.com.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
MATEMATIKA EKONOMI UT HIMPUNAN dan SISTEM BILANGAN.
HIMPUNAN Oleh Cipta Wahyudi.
Himpunan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
MATEMATIKA EKONOMI HIMPUNAN dan SISTEM BILANGAN Ir Tito Adi Dewanto.
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Himpunan.
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Logika Matematika Himpunan Sri Nurhayati.
BAB 1 Himpunan
Teori Dasar Himpunan Matematika diskrit - 1.
Dasar Dasar Matematika
BAB 1 HIMPUNAN.
BAB 1 HIMPUNAN.
1 Himpunan Bahan kuliah Matematika Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Matematika Diskrit bab 2-Himpunan Himpu nan Oleh : Sri Supatmi,S.Kom.
1 Himpunan Bahan kuliah IF2091 Struktur Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Transcript presentasi:

Matematika Diskrit Himpunan Sri Nurhayati

Himpunan Himpunan  kumpulan objek – objek yang berbeda. Objek didalam himpunan disebut elemen, unsur, atau anggota. Penyajian himpunan : Enumerasi contoh : A = {1,2,3,4}; B = {2,4,6,8} Simbol – simbol baku contoh : N = himpunan bilangan asli = {1,2,…} Notasi pembentuk himpunan contoh : A = {x | x є N, x < 5} Diagram Venn Sri Nurhayati

Kardinalitas Misalkan A merupakan himpunan berhingga, maka jumlah elemen berbeda di dalam A disebut kardinal dari himpunan A. notasi : n(A) atau |A| Contoh : A = {x | x merupakan bilangan prima yang lebih kecil dari 20}, maka |A| = 8 b. B = {a, {a}, {{a}}, { }}, maka |B| = 4 Sri Nurhayati

Himpunan Kosong Himpunan yang tidak memiliki satupun elemen atau himpunan dengan kardinal = 0. Notasi  atau { } Contoh : A = {x | x > x}, maka |A| = 0 B = {x | x adalah akar persamaan dari x2 + 5x + 10 = 0}, maka |B| = 0 Sri Nurhayati

Himpunan Bagian (Subset) Himpunan A dikatakan himpunan bagian (subset) dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B. B dikatakan superset dari A. Notasi : A  B Contoh : {1, 2, 3}  {1,2,3,4,5,6,7,8,9,10} {1, 2, 3}  {1,2,3} A = {(x,y) | x+y < 4, x≥0, y≥0} dan B = {(x,y) | 2x+y < 4, x≥0, y≥0} maka B  A Sri Nurhayati

Himpunan yang Sama Himpunan A dikatakan sama dengan himpunan B jika dan hanya jika keduanya mempunyai elemen yang sama. Notasi : A = B  A  B dan B  A Contoh : jika A = {0, 1} dan B = {x|x(x-1) = 0}, maka A = B jika A = {2,3,5,8} dan B = {3,5}, maka A≠B Sri Nurhayati

Himpunan yang Ekivalen Himpunan A dikatakan ekivalen dengan himpunan B, jika dan hanya jika kardinal dari kedua himpunan tersebut sama. Notasi : A ~ B  |A| = |B|. Contoh : JIka A = {1,3,5,7} dan B = {a,b,c,d}, maka A~B Sri Nurhayati

Himpunan Saling Lepas JIka A = {1,3,5,7} dan B = {a,b,c,d}, maka A//B Dua himpunan dikatakan saling lepas, jika dan hanya jika keduanya tidak memiliki elemen yang sama. Notasi : A // B Contoh : JIka A = {1,3,5,7} dan B = {a,b,c,d}, maka A//B Sri Nurhayati

Himpunan Kuasa Himpunan kuasa (power set) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri. Notasi : P(A) atau 2A Contoh : Jika A = {1,2}, maka P(A) = {, {1}, {2}, {1,2}} Sri Nurhayati

Operasi Himpunan (1) Irisan (intersection) Contoh : Irisan dari himpunan A dan B adalah sebuah himpunan yang setiap elemennya dari himpunan A dan B. Notasi : A  B = {x|x є A dan x є B} Contoh : Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A  B = {4, 10} Sri Nurhayati

Operasi Himpunan (2) Gabungan (union) Contoh : Gabungan dari himpunan A dan B adalah himpunan yang setiap anggotanya merupakan anggota himpunan A dan B. Notasi : A  B = { x  x  A atau x  B } Contoh : Jika A = { 2, 5, 8 } dan B = { 7, 5, 22 }, maka A B = { 2, 5, 7, 8, 22 } Sri Nurhayati

Operasi Himpunan (3) Komplemen (complement) Komplemen dari himpunan A adalah himpunan yang mengandung semua elemen dalam semesta pembicaraan yang tidak ada didalam A. Notasi : A= { x  x  U, x  A } Contoh : Misalkan U = { 1, 2, 3, ..., 9 }, jika A = {1, 3, 7, 9}, maka = {2, 4, 6, 8} Sri Nurhayati

Operasi Himpunan (4) Selisih (difference) Selisih dari dua himpunan A dan B adalah suatu himpunan yang elemennya merupakan elemen dari A tetapi bukan elemen dari B. Selisih dari A dan B dapat juga dikatakan sebagai komplemen himpunan B relatif terhadap himpunan A. Notasi : A – B = { x  x  A dan x  B } = A  B Contoh : {1, 3, 5} – {1, 2, 3} = {5}, tetapi {1, 2, 3} – {1, 3, 5} = {2} Sri Nurhayati

Operasi Himpunan (5) Beda Setangkup (Symmetric Difference) Contoh : Beda stangkup dari himpunan A dan B adalah suatu himpunan yang elemennya ada pada himpunan A atau B, tetapi tidak pada keduanya. Notasi : A  B = (A  B) – (A  B) = (A – B)  (B – A) Contoh : Jika A = { 2, 4, 6 } dan B = { 2, 3, 5 }, maka A B = { 3, 4, 5, 6 } Sri Nurhayati

Operasi Himpunan (6) Perkalian Kartesian (cartesian product) Perkalian kartesian dari himpunan A dan B adalah himpunan yang elemennya semua pasangan berurutan yang dibentuk dari himpunan A dan komponen kedua dari himpunan B. Notasi : A  B = {(a, b)  a  A dan b  B } Contoh : Misalkan C = { 1, 2, 3 }, dan D = { a, b }, maka C  D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) } Sri Nurhayati

Prinsip Inklusi-Eksklusi Untuk dua himpunan A dan B: A  B = A + B – A  B A  B = A +B – 2A  B Contoh : A = himpunan bilangan bulat yang habis dibagi 3, B = himpunan bilangan bulat yang habis dibagi 5, A  B = himpunan bilangan bulat yang habis dibagi 3 dan 5 (yaitu himpunan bilangan bulat yang habis dibagi oleh KPK – Kelipatan Persekutuan Terkecil – dari 3 dan 5, yaitu 15), yang ditanyakan adalah A  B. A = 100/3 = 33, B = 100/5 = 20, A  B = 100/15 = 6 A  B = A + B – A  B = 33 + 20 – 6 = 47 Jadi, ada 47 buah bilangan yang habis dibagi 3 atau 5. Sri Nurhayati