Self-Organizing Network Model (SOM) Pertemuan 10

Slides:



Advertisements
Presentasi serupa
Kohonen Self Organizing Feature Map
Advertisements

Self Organizing Map.
K-Means Clustering.
Pengelompokan Jenis Tanah Menggunakan Algoritma Clustering K-Means
Self Organizing Maps Tim Asprak Metkuan
TOWARDS MULTIPLE IDENTITY DETECTION IN SOCIAL NETWORKS & RESEARCH METODOLOGY 3KS2 ERMA FITRIANA RANITA RIZKI APRILLIA.
Applied Multivariate Analysis
Backpropagation neural net
1 Pertemuan 1 Introduction Matakuliah: sistem Operasi Tahun: 2010.
ARRAY RUBY. PENDAHULUAN Ruby's arrays are untyped and mutable. The elements of an array need not all be of the same class, and they can be changed at.
Teorema Green.
MULTILAYER PERCEPTRON
Clustering. Definition Clustering is “the process of organizing objects into groups whose members are similar in some way”. A cluster is therefore a collection.
IMAM ZAENUDIN, Perbedaan Hasil Belajar Siswa Antara Pembelajaran Menggunakan Model Contextual Teaching and Learning (CTL) dan Pembelajaran Konvensional.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Pertemuan 23 Minimum Cost Spanning Tree
Clustering (Season 2) Self-Organizing Map
Back-Propagation Pertemuan 5
Artificial Neural Network (Back-Propagation Neural Network)
JARINGAN SARAF TIRUAN LANJUTAN
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Jaringan Syaraf Tiruan (JST) stiki. ac
1 Pertemuan 26 NEURO FUZZY SYSTEM Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
PERTEMUAN KE-6 UNIFIED MODELLING LANGUAGE (UML) (Part 2)
1 Pertemuan 8 JARINGAN COMPETITIVE Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Pertemuan 3 JARINGAN PERCEPTRON
1 Pertemuan #3 Probability Distribution Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
1 Pertemuan 24 Deret Berkala, Peramalan, dan Angka Indeks-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 13 Algoritma Pergantian Page Matakuliah: T0316/sistem Operasi Tahun: 2005 Versi/Revisi: 5.
Konsep Neural Network Learning Pertemuan 3
Pertemuan 14 Algoritma Pergantian Page (lanjutan)
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Ukuran Pemusatan dan Lokasi Pertemuan 03 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Jartel, Sukiswo Sukiswo
Pertemuan 12 ARTIFICIAL NEURAL NETWORKS (ANN) - JARINGAN SYARAF TIRUAN - Betha Nurina Sari, M.Kom.
HUKUM AMPERE.
Metode Cluster Self-Organizing Map untuk Temu Kembali Citra
Evolutionary Programming (EP)
Pengaruh incomplete data terhadap
Arsitektur Neural Network Pertemuan 2
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Clustering.
Clustering Best Practice
Aplikasi Kecerdasan Komputasional
Neuro-Fuzzy Dr. Suyanto, S.T., M.Sc. HP/WA:
VECTOR VECTOR IN PLANE.
Learning Theory Artificial Intelligence Teknik Informatika – UNIKOM
SOM – KOHONEN Unsupervised Learning
Jaringan Syaraf Tiruan (JST)
Pendugaan Parameter (II) Pertemuan 10
Learning Theory Artificial Intelligence Teknik Informatika – UNIKOM
Artificial Intelligence (AI)
Classification Supervised learning.
Strategi pembelajaran dasar
D. Backpropagation Pembelajaran terawasi dan biasa digunakan perceptron dengan banyak lapisan untuk mengubah bobot-bobot yang terhubung dengan neuron-neuron.
Artificial Neural Network
MATERI PERKULIAHAN KECERDASAN BUATAN
Clustering (Season 2) Self-Organizing Map
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Pertemuan 12 ARTIFICIAL NEURAL NETWORKS (ANN) - JARINGAN SYARAF TIRUAN - Betha Nurina Sari, M.Kom.
Semester Pendek FMIPA UGM 2005
Metode Data Mining “ Self-Organizing Map [SOM] ” Taskum Setiadi ADVANCE MACHINE LEARNING STMIK Nusa Mandiri Jakarta2016 ADVANCE MACHINE LEARNING.
Simultaneous Linear Equations
Konsep Aplikasi Data Mining
JARINGAN SYARAF TIRUAN BERBASIS KOMPETISI
Aplikasi Graph Minimum Spaning Tree Shortest Path.
Pengelompokan Dokumen (Document Clustering)
By : Rahmat Robi Waliyansyah, M.Kom
Universitas Gunadarma
Transcript presentasi:

Self-Organizing Network Model (SOM) Pertemuan 10 Matakuliah : T0293/Neuro Computing Tahun : 2005 Self-Organizing Network Model (SOM) Pertemuan 10

Unsupervised Learning of Clusters Neural Networks yang telah dibahas pada bab terdahulu melakukan fungsinya setelah dilakukan training (supervised) SOM adalah neural networks tanpa training (unsupervised) SOM melakukan learning berdasarkan pengelompokan data input (clustering of input data) Clustering pada dasarnya adalah pengelompok-kan dari objek-objek yang serupa &memisahkan objek-objek yang berbeda

Clustering dan Pengukuran Keserupaan Misalnya kita diberikan sekumpulan pola tanpa ada informasi adanya sejumlah cluster/pengelompokan. Masalah clustering dalam kasus ini adalah pengidentifikasian jumlah cluster berdasarkan kriteria-kriteria tertentu. Himpunan pola { X1, X2, ... , XN }, jika akan dikelompokkan memerlukan ‘decision function’. Pengukuran keserupaan yang umum digunakan adalah ‘Eucledian distance’.   || X - Xi || =  ( X - Xi )t ( X - Xi ) Semakin kecil ‘distance’ semakin serupa pola tersebut.

Struktur Pola Pola-pola dalam ‘Pattern Space’ dapat didistribusikan ke dalam dua struktur yang berbeda. Perhatikan struktur berikut. Cluster Straight lines Lines Class 1 Class 2 Class 3 (a) (b) Figure 7.10 Pattern structure: (a) natural similarity and (b) no natural similarity Struktur natural selalu berkaitan dengan pengelompokan pola (pattern clustering).

Algoritma SOM Compute Distances to All Nodes Compute distances dj between the input and each output node j using   dj =  (xi(t) - wij(t))2 where xi(t) is the input to node i at time t and wij(t)is the weight from input node i to output node j at time t N - 1 i = 0 Step 3. Step 1. Initialize Weights Initialize weights from N inputs to the M output nodes shown in Fig. 17 to small random values. Set the initial radius of the neighborhood shown in Fig. 18 Step 2. Present New Input

Step 4. Select Output Node with Minimum Distance Select node j* as that output node with minimum dj. Step 5. Update Weights to Node j* and Neighbors Weights are updated for node j* and all nodes in the neighborhood defined by Nej*(t) as shown in Fig. 18. New weights are wij (t+1) = wij (t) +  (t) (xi (t) - wij (t)) For j  Nej* (t) 0  i  N - 1   The term  (t) is a gain term ( 0 <  (t) < 1) that decreases in time Step 6. Repeat by Going to Step 2

Algoritma Kohonen menghasilkan ‘vektor quantizer’ dengan cara menyesuaikan bobot. Figure 17. Two-dimensional array of output nodes used to form feature maps. Every input is connected to every output node via a variable connection weight. OUTPUT NODES X0 X1 Xn-1

Algoritma Kohonen yang menghasilkan ‘Feature Maps’ memerlukan neigbourhood di sekitar node-node Figure 18. Topological neighborhoods at different times as feature maps are formed. NEj (t) is the set of nodes considered to be in the neighborhood of node j at time t. The neighborhood starts large and slowly decreases in size over time. In this example, 0 < t1 < t2. NEj (0) NEj (t1) NEj (t2) j