VEKTOR.

Slides:



Advertisements
Presentasi serupa
BAB III VEKTOR.
Advertisements

VEKTOR Mata Kuliah : Matematika Elektro Oleh : Warsun Najib
VEKTOR.
BAB 2 VEKTOR Besaran Skalar Dan Vektor
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Matrik dan Ruang Vektor
Vektor dan Skalar Vektor adalah Besaran yang mempunyai besar dan arah.
Vektor oleh : Hastuti.
Bab 4 vektor.
ALJABAR LINIER & MATRIKS
Aljabar Vektor (Perkalian vektor-lanjutan)
Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)
Pengantar Vektor.
BAB V (lanjutan) VEKTOR.
BAB 2 VEKTOR 2.1.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
ALJABAR LINIER & MATRIKS
Vektor Ruang Dimensi 2 dan Dimensi 3
BAB V (lanjutan) VEKTOR.
Kalkulus Vektor Pertemuan 13, 14, 15, & 16
Vektor By : Meiriyama Program Studi Teknik Komputer
Matakuliah : Kalkulus II
VEKTOR.
Matakuliah : D0684 – FISIKA I
BESARAN FISIKA DAN SISTEM SATUAN
VEKTOR BUDI DARMA SETIAWAN.
2. VEKTOR 2.1 Vektor Perpindahan B
MATA KULIAH MATEMATIKA LANJUT 1 [KODE/SKS : IT / 2 SKS]
VEKTOR 2.1.
(Tidak mempunyai arah)
Tri Rahajoeningroem,MT T. Elektro - UNIKOM
VEKTOR VEKTOR PADA BIDANG.
P. X w A B B v v+w v+w w v v v+w w v -v v-w v v v-w -w w w
VEKTOR Mata Kuliah : Kalkulus I Oleh : Ali Mahmudi
PERKALIAN VEKTOR LANJUT
PERKALIAN VEKTOR Di sini ditanyakan apa yang dimaksud dengan fisika.
BAB 2 VEKTOR Pertemuan
Kalkulus 2 Vektor Ari kusyanti.
Vektor.
Besaran Vektor faridisite.wordpress.com.
VektoR.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 4 VEKTOR Home.
PERTEMUAN II VEKTOR.
BESARAN DAN SISTEM SATUAN
Aljabar Linear Elementer
DIFERENSIAL VEKTOR Kuliah 1.
DOT PRODUCT dan PROYEKSI ORTHOGONAL
BESARAN FISIKA DAN SISTEM SATUAN
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Aljabar Linier Vektor Oleh: Chaerul Anwar, MTI.
ALJABAR LINIER & MATRIKS
Satuan Pendidikan : SMA Mata Pelajaran : Fisika Kelas / Semester : X MIA / Ganjil Materi Pembelajaran : Vektor Alokasi Waktu : 1 x 120 menit.
BAB 3 VEKTOR 2.1.
Indikator Pencapaian:
Oleh : Farihul Amris A, S.Pd.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
HASIL KALI TITIK (DOT PRODUCT)
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
V e k t o r Materi kelas XII IPA Semester V.
VEKTOR.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 2 VEKTOR 2.1.
VEKTOR Dosen : ANDI MARIANI RAMLAN, S.Pd., M.Pd
VEKTOR.
BESARAN & VEKTOR.
PERKALIAN VEKTOR LANJUT
Vektor Indriati., ST., MKom.
Komponen vektor merupakan proyeksi vektor pada sumbu sistem koordinat
Transcript presentasi:

VEKTOR

PENGENALAN VEKTOR Besaran Skalar Besaran Vektor z y x Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang hanya memiliki besar ( nilai ) saja Contoh: panjang, massa, dan waktu Catatan : skalar tidak tergantung sistem koordinat Besaran Vektor z x y Besaran yang memiliki besar ( nilai ) dan juga arah Contoh : kecepatan, percepatan, gaya Catatan : vektor tergantung sistem koordinat

Adalah Himpunan ruas garis-ruas garis berarah yang mempunyai besar dan arah yang sama,dimana panjang ruas garis berarah itu disebut panjang vektor dan arah ruas garis berarah disebut arah vektor V e k t o r

Besar vektor A = A = |A| (pakai tanda mutlak) PENGGAMBARAN DAN PENULISAN (NOTASI) VEKTOR Gambar : P Q Titik P : Titik pangkal vektor Titik Q : Ujung vektor Tanda panah : Arah vektor Panjang PQ = |PQ| : Besarnya (panjang) vektor Besar vektor A = A = |A| (pakai tanda mutlak) Notasi Vektor A Huruf tebal Pakai tanda panah di atas A Huruf miring

Catatan : a. Dua vektor sama jika arah dan besarnya sama A B A = B b. Dua vektor dikatakan tidak sama jika : 1. Besar sama, arah berbeda B A A B Why? 2. Besar tidak sama, arah sama A B A B Why? 3. Besar dan arahnya berbeda A B A B Why?

VEKTOR DI R2 Vektor di R2 adalah vektor yang terletak di satu bidang atau Vektor yang hanya mempunyai dua komponen yaitu x dan y

VEKTOR DI R2 a y OP = xi; OQ= yj j Jadi x OA =xi + yj atau i A(x,y) y Q a OP = xi; OQ= yj Jadi OA =xi + yj atau a = xi + yj j x X O i P i vektor satuan searah sumbu X j vektor satuan searah sumbu Y

adalah Vektor yang terletak di Vektor di R3 adalah Vektor yang terletak di ruang dimensi tiga atau Vektor yang mempunyai tiga komponen yaitu x, y dan z

Misalkan koordinat titik T di R3 adalah (x, y, z) maka OP = xi; OQ = yj dan OS = zk Z S zk T(x,y,z) yj O Q Y xi P X

OP + PR = OR atau OP + OQ = OR OR + RT = OT atau OP + OQ + OS = OT Z S zk T(x,y,z) Jadi OT = xi + yj + zk atau t = xi + yj + zk t yj O Y xi Q P R(x,y) X

OPERASI VEKTOR

Penjumlahan Vektor Penjumlahan vektor menurut aturan segitiga dan aturan jajaran genjang v u w = u + v

Hasil dari aljabar tersebut dengan menggunakan 2 metode hasilnya sama, yaitu :

Penjumlahan Vektor Dalam bentuk pasangan bilangan sbb:

Pengurangan Vektor Selisih dua vektor u dan v ditulis u – v didefinisikan u + (-v) Dalam bentuk pasangan bilangan v u u w = u - v -v

Besar Vektor Hasil Penjumlahan dan Pengurangan

Sifat-sifat Vektor

Latihan (1) :

PERKALIAN VEKTOR 1. Perkalian Skalar dengan Vektor 2. Perkalian vektor dengan Vektor Perkalian Titik (Dot Product) Perkalian Silang (Cross Product) 1. Perkalian Skalar dengan Vektor Hasilnya vektor k : Skalar A : Vektor C = k A Vektor C merupakan hasil perkalian antara skalar k dengan vektor A Catatan : Jika k positif arah C searah dengan A Jika k negatif arah C berlawanan dengan A k = 3, A C = 3A

Perkalian Titik (Dot Product) Perkalian titik (dot product) a•b (dibaca a dot b) antara dua vektor a dan b merupakan perkalian antara panjang vektor dan cosinus sudut antara keduanya. Dalam bentuk komponen vektor, bila a = [a1,b1,c1] dan b = [a2,b2,c2], maka : a•b > 0 jika {γ| 0 < γ < 90o} a•b = 0 jika {γ| γ = 90o} a•b < 0 jika {γ| 90o < γ< 180o}

Besar dan Arah dalam Perkalian Dot Product Besar Sudut γ dapat dihitung dgn:

PERKALIAN SILANG (CROSS PRODUCT) Arah vektor hasil cross product adalah tegak lurus pada kedua vektor tersebut dan memenuhi aturan tangan kanan (right-hand rule). a x b = ab sin  .  = sudut antara vektor dan vektor

Dan apabila ditulis dalam determinan matriks, maka kita dapatkan rumus sebagai berikut:

Cross Product Contoh:

2. Diketahui koordinat titik A adalah (2, -3, 4) 2. Diketahui koordinat titik A adalah (2, -3, 4). Tuliskan dalam bentuk vektor dan berapa besar vektornya ? Vektor Jawab : = + 2 (-3) 4 A 2i – 3j + 4k 29 satuan 3. Tentukanlah hasil perkalian titik dan perkalian silang dari dua buah vektor berikut ini : 2i – 2j + 4k A = i – 3j + 2k B Jawab : Perkalian titik : Perkalian silang : A . B = 2.1 + (-2)(-3) + 4.2 = 16 2 3 1 4 - k j i A x B = = { (-2).2 – 4.(-3)} i – {2.2 – 4.1} j + {2.(-3) – (-2).1} k = (-4+12) i – (4-4) j + (-6+4) k = 8i – 0j – 2j = 8i – 2k

Sifat Perkalian skalar dan vektor

Vektor Posisi OA = a dan OB = b adalah vektor posisi. AB = OB – OA Vektor yang menyatakan posisi suatu titik dalam sistem koordinat OA = a dan OB = b adalah vektor posisi. AB = OB – OA = b – a X Y A B b a

VEKTOR SATUAN Vektor yang besarnya satu satuan Notasi Besar Vektor Dalam koordinat Cartesian (koordinat tegak) Z A k Arah sumbu x : j Arah sumbu y : Y i Arah sumbu z : X

Vektor Ortogonal Teorema Hasil perkalian dot product antara dua vektor bukan-nol adalah nol jika dan hanya jika vektor-vektor tersebut saling tegak lurus Vektor a disebut ortogonal thd vektor b jika a•b = 0, dan vektor b juga ortogonal thd vektor a. Vektor nol 0 ortogonal terhadap semua vektor. Untuk vektor bukan-nol a•b = 0 jika dan hanya jika cos γ = 0  γ = 90o = π/2

Proyeksi Ortogonal Jika u dan a adalah vektor - vektor dalam ruang berdimensi 2 atau 3 dan jika a ≠ 0, maka : Proyeksi ortogonal u pada a atau komponen vektor u yang sejajar dengan a Komponen vektor u yang ortogonal terhadap a

Panjang komponen vektor u sepanjang a