PENGUJIAN HIPOTESIS
Hipotesis : Merupakan suatu asumsi atau anggapan yang bisa benar atau bisa salah mengenai sesuatu hal, dan dibuat untuk menjelaskan sesuatu hal tersebut sehingga memerlukan pengecekan lebih lanjut. Asumsi atau anggapan itu seringkali dipakai sebagai dasar dalam memutuskan atau menetapkan sesuatu dalam rangka menyusun perencanaan atau kepentingan lainnya baik dalam bidang ekonomi, bisnis, pendidikan, dll.
Bila hipotesis ini dikaitkan dengan parameter populasi, maka hipotesis ini disebut hipotesis statistik. Hipotesis statistik adalah suatu asumsi atau anggapan atau pernyataan yang mungkin benar atau mungkin salah mengenai parameter satu populasi atau lebih.
Pengujian statistik : adalah suatu prosedur yang didasarkan kepada bukti sampel dan teori probabilitas yang dipakai untuk menentukan apakah hipotesis yang bersangkutan merupakan pernyataan yang wajar dan oleh karenanya tidak ditolak, atau hipotesis tersebut tidak wajar dan oleh karena itu harus ditolak.
Prosedur lima langkah untuk menguji suatu hipotesis : Rumuskan hipotesis nol dan hipotesis alternatif Pilih suatu taraf nyata Tentukan Uji Statistik Buat aturan pengambilan keputusan Ambillah sampel, ambil keputusan Tidak menolak H0 Menolak H0 atau Langkah 5 Langkah 1 Langkah 2 Langkah 3 Langkah 4
Langkah 1 : Rumuskan hipotesis nol dan hipotesis alternatif. Langkah pertama adalah merumuskan hipotesis yang akan diuji. Hipotesis ini disebut Hipotesis nol disebut H0 (dibaca H nol). Hipotesis alternatif menggambarkan apa yang akan anda simpulkan jika menolak hipotesis nol. Hipotesis alternatif ditulis H1 (dibaca H satu).
Langkah 2 : Taraf nyata Taraf nyata diberi tanda (alpha), disebut juga tingkat resiko karena menggambarkan resiko yang harus dipikul bila menolak hipotesis nol padahal hipotesis nol sebetulnya benar. Tidak ada satu taraf nyata yang diterapkan untuk semua penelitian yang menyangkut penarikan sampel. Kita harus mengambil suatu keputusan untuk memakai taraf 0,05 (disebut taraf 5 persen), taraf 0,01, atau taraf yang lain antara 0 dan 1. Pada umumnya pada proyek penelitian menggunakan taraf 0,05, sedangkan untuk pengendalian mutu dipilih 0,01, dan untuk pengumpulan jajak pendapat ilmu-ilmu sosial dipakai 0,10
Langkah 3 : Uji statistik Merupakan suatu nilai yang ditentukan berdasar informasi dari sampel, dan akan digunakan untuk menentukan apakah akan menerima atau menolak hipotesis. Ada bermacam-macam uji statistik, di sini kita akan menggunakan uji statistik seperti z, student-t, F, dan 2 (Chi-kuadrat).
Langkah 4 : Aturan pengambilan keputusan Aturan pengambilan keputusan merupakan pernyataan mengenai kondisi di mana hipotesis nol ditolak dan kondisi di mana hipotesis nol tidak ditolak. Gambar berikut menggambarkan daerah penolakan untuk suatu uji taraf nyata : Probabilitas 0,05 Probabilitas 0,95 1,645 Tidak menolak H0 Daerah Penolakan Nilai Kritis Distribusi Sampling bagi Statistik z
Perhatikan dalam gambar di atas bahwa : Daerah di mana hipotesis nol tidak ditolak mencakup daerah di sebelah kiri 1,645. Daerah penolakan adalah di sebelah kanan dari 1,645. Diterapkan suatu uji satu arah. Taraf nyata 0,05 dipilih. Nilai 1,645 memisahkan daerah-daerah dimana hipotesis nol ditolak dan di mana hipotesis nol tidak ditolak. Nilai 1,645 dinamakan nilai kritis.
Langkah 5 : Mengambil keputusan Langkah terakhir dalam uji statistik adalah mengambil keputusan untuk menolak atau tidak menolak hipotesis nol. Keputusan menolak hipotesis nol karena nilai uji statistik terletak di daerah penolakan.
Perlu juga diperhatikan bahwa keputusan untuk menolak atau tidak adalah keputusan yang diambil oleh peneliti yang sedang melakukan penelitian. Hasil ini merupakan rekomendasi berdasarkan bukti-bukti sampel yang dapat diberikan peneliti kepada manajer puncak sebagai pembuat keputusan, tetapi keputusan akhir biasanya tetap diambil oleh manajer puncak tersebut.
Uji Satu Arah dan Uji Dua Arah Bila hipotesis nol H0 : = 0 dilawan dengan hipotesis alternatif H1 : > 0 atau H1 : < 0 Uji satu arah ditandai dengan adanya satu daerah penolakan hipotesis nol yang bergantung pada nilai kritis tertentu. Nilai kritis diperoleh dari tabel untuk nilai yang telah dipilih sebelumnya. Probabilitas 0,05 Probabilitas 0,95 1,645 Tidak menolak H0 Daerah Penolakan Nilai Kritis Distribusi Sampling bagi Statistik z
Uji dua arah Bila hipotesis nol H0 : = 0 dilawan dengan hipotesis alternatif H1 : 0 . Uji dua arah ditandai dengan adanya dua daerah penolakan hipotesis nol yang juga bergantung pada nilai kritis tertentu. Nilai kritis ini diperoleh dari tabel untuk nilai /2 yang telah dipilih sebelumnya.
Dua kesalahan yg perlu dicegah dalam pengujian hipotesis Hipotesis (Ho) Benar Salah Diterima Keputusan benar Keputusan salah (salah jenis II) Ditolak Keputusan salah (salah jenis I)
DUA TIPE HIPOTESIS HIPOTESIS KORELATIF YAITU PERNYATAAN TENTANG ADA ATAU TIDAK ADANYA HUBUNGAN ANTARA DUA VARIABEL ATAU LEBIH HIPOTESIS KOMPARATIF YAITU PERNYATAAN TENTANG ADA ATAU TIDAK ADANYA PERBEDAAN ANTARA DUA KELOMPOK ATAU LEBIH
PERUMUSAN HIPOTESIS DINYATAKAN SEBAGAI KALIMAT PERNYATAAN (DEKLARATIF) MELIBATKAN MINIMAL DUA VARIABEL PENELITIAN MENGANDUNG SUATU PREDIKSI HARUS DAPAT DIUJI (TESTABLE)
Contoh Berdasarkan informasi yang dikemukakan pada sebuah media massa, bahwa harga beras jenis “A” di suatu wilayah adalah Rp. 3.200,- (Pengujian Dua Pihak) Ho : µ = Rp. 3.200,- H1: µ ≠ Rp. 3.200,- Berdasarkan informasi bahwa harga beras jenis “A” di suatu wilayah tidak kurang dari Rp. 3.200,- (Pengujian Satu Pihak – Kiri) Ho : µ ≥ Rp. 3.200,- H1 : µ < Rp. 3.200,- Berdasarkan informasi bahwa harga beras jenis “A” di suatu wilayah tidak lebih dari Rp. 3.200,- (Pengujian Satu Pihak – Kanan) Ho : µ ≤ Rp. 3.200,- H1 : µ > Rp. 3.200,-
Contoh kasus Sebuah perusahaan rokok menyatakan bahwa kadar nikotin rata-rata rokok yg diproduksinya tidak melebihi 2,5 mg. Nyatakan hipotesis nol dan hipotesis alternatifnya yg akan digunakan utk menguji pernyataan tsb Suatu agen real estate menyat 60% diantara rmh pribadi yg baru selesai dibangun mrp rmh dgn 3 kamar tidur. Utk menguji pernyt tsb diperiksa sejml besar rmh. Proporsi rmh yg memp 3 kamar tdr dicatat dan dipergunakan dlm statistik uji. Nyatakan hipotesis nol dan hipotesis alternatifnya yg akan digunakan utk menguji pernyataan tsb
Menentukan nilai uji statistik Uji statistik merupakan rumus-rumus yang berhubungan dgn distribusi tertentu dalam pengujian hipotesis Distribusi Z, t, F dsb
Uji Statistik - Jika simpangan baku populasi diketahui, - jika simpangan baku populasi tidak diketahui,
b). Untuk sampel kecil (n < 30) prosedurnya sama hanya pengujian statistiknya menggunakan distribusi t
Contoh Soal Ada anggapan mengenai harga beras di pasar bebas daerah kota “A” Rp. 600,-/Kg dengan simpangan bakunya Rp. 25,-. Berangkat dari anggapan tersebut diatas, selanjutnya diadakan penelitian terhadap 40 kios beras sebagai sampel yang diambil secara acak, dan ternyata diperoleh informasi dari data tersebut rata-rata harga beras di pasar bebas adalah sebesar Rp 594,-/kg. Pertanyaan uji kebenaran anggapan diatas dengan taraf nyata 5% ?
Uji satu arah: Ho : µ = Rp. 600,- Ha : µ ≠ Rp. 600,- Perhitungan sampel: Untuk Z0.05/2 = Z(0.025) = 1 – 0.025 =0,975 Z = ±1.96 X = µ0 ± (Za/2 ) (SX) = 600 ± (1.96) (25/ √40) = 600 ± 7.75
Manajer pemasaran sebuah produk aditif bahan bakar mengatakan bahwa jumlah rata-rata produk aditif yg terjual adalah 1500 botol. Seorang karyawan di pabrik ingin menguji pernyataan manajer pemasaran dgn mengambil sampel selama 36 hari. Dia mendapati bahwa jml penjualan rata-ratanya adlh 1450 botol. Dari catatan yang ada, standart deviasi penjualan 120 botol. Dgn menggunakan α=0,01, apakah kesimpulan yg dpt ditarik oleh karyawan tsb
Contoh: Dengan suntikan hormon tertentu pada ayam/ikan akan menambah berat badannya rata-rata 4.5 ton per kelompok. Sampel acak yang terdiri atas 25 kelompok ayam/ikan yang telah diberi suntikan hormon memberikan rata-rata 4.9 ton dan simpangan baku = 0.8 ton. Apakah pernyataan tersebut diterima? Bahwa pertambahan rata-rata paling sedikit 4.5 ton
Penyelesaian H : µ ≤ 4.5, berarti penyuntikan hormon pada ayam/ikan tidak menyebabkan bertambahnya rata-rata berat badan dengan 4.5 ton A : µ > 4.5, berarti penyuntikan hormon pada ayam/ikan menyebabkan bertambahnya rata-rata berat badan paling sedikit dengan 4.5 X = 4.9 ton N = 25 S = 0.8 ton µo = 4.5 ton
Dengan mengambil = 0.01, dk = 30 didapat t = 2.46 Kriteria tolak hipotesis H jika t hitung lebih besar atau sama dengan 2.46 dan teriam H jika sebaliknya Penelitian memberi hasil t = 2.78 Hipotesis H ditolak Kesimpulan : Penyuntikan hormon terhadap ayam/ikan dapat menambah berat badan rata-rata paling sedikit dengan 4.5 ton
Gambar kurva
Menguji Selisih Rata-rata Hitung Populasi
Pengujian Hipotesis Data Berpasangan
Contoh Soal
Jawab
Menguji Hipotesis proporsi
Contoh Soal
Menguji selisih proporsi
Contoh
Latihan Soal