KALKULUS I FUNGSI-KOMPOSISI

Slides:



Advertisements
Presentasi serupa
Menentukan komposisi dua fungsi dan invers suatu fungsi
Advertisements

Bab 6 Fungsi Komposisi dan Fungsi Invers
Untuk Kelas XI Ips Semester Genap
MATEMATIKA DISKRIT STMIK AMIKOM PURWOKERTO Septi Fajarwati, S.Pd.
FUNGSI Fungsi adalah relasi dari himpunan A ke himpunan B, jika dan hanya jika tiap unsur dalam himpunan A berpasangan tepat hanya dengan sebuah unsur.
5. FUNGSI.
Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam.
MATEMATIKA DISKRIT SISTEM KOMBINASI DOSEN : FIRDAUS
RELASI DAN FUNGSI Pertemuan II Kalkulus Nina Hairiyah, S.TP., M.Si
Fungsi & Grafiknya Riri Irawati, M.Kom 3 sks.
Riri Irawati, M.Kom Logika Matematika – 3 sks
Fungsi Operasi pada Fungsi
KOMPOSISI FUNGSI DAN FUNGSI INVERS.
FUNGSI Definisi Fungsi
KOMPOSISI FUNGSI DAN FUNGSI INVERS
ICT DALAM PEMBELAJARAN MATEMATIKA
FUNGSI REF : 1. Rosen, Kenneth H., 2003, Discrete mathematics and its application, fifth-ed. 2. Keith Devlin, Set, function and logic, 2004.
MATEMATIKA INFORMATIKA 2
FAKTORISASI SUKU ALJABAR DAN FUNGSI
Bab 2 Persamaan dan Fungsi Kuadrat
Produk Cartesius Relasi Relasi Khusus RELASI.
Klik Esc pada Keyboard untuk mengakhiri Program
Komposisi Dua Fungsi Dan Fungsi Invers
Oleh : Ir. Ita Puspitaningrum M.T
FUNGSI KOMPOSISI DAN FUNGSI INVERS
LOGIKA MATEMATIKA PERTEMUAN 4 KOMPOSISI BENTUK FUNGSI
Oleh : Irayanti Adriant, S.Si, M.T
Matematika I Bab 3 : Fungsi
FUNGSI KOMPOSISI Pengertian Komposisi Fungsi Rumus Komposisi Fungsi
FUNGSI KOMPOSISI & FUNGSI INVERS
Pertemuan ke-6 RELASI DAN FUNGSI.
HOMOMORFISMA GRUP (Lanjutan)
Fungsi Oleh : Astri Setyawati ( )
MATEMATIKA INDUSTRI -FUNGSI-
Oleh : Hayani Hamudi, S.Pd.
Matematika Diskrit Fungsi Dani Suandi, S.Si.,M.Si.
FUNGSI DUA VARIABEL ATAU LEBIH
Logika Matematika Fungsi Heru Nugroho, S.Si., M.T.
LOGIKA INFORMATIKA I Gusti Ayu Agung Diatri Indradewi, S. Kom
ASSALAMU’ALAIKUM WR WB.
FUNGSI. DAFTAR SLIDE DEFINISI FUNGSI INVERS FUNGSI FUNGSI KOMPOSISI 22 OPERASI FUNGSI.
Fungsi Oleh: Devie Rosa A.
FUNGSI REF : 1. Rosen, Kenneth H., 2003, Discrete mathematics and its application, fifth-ed. 2. Keith Devlin, Set, function and logic, 2004.
Kumpulan Materi Kuliah
ASSALAMU’ALAIKUM WR WB.
Matematika Diskrit Fungsi Heru Nugroho, S.Si., M.T.
ASSALAMU’ALAIKUM WR WB.
ASSALAMU’ALAIKUM Wr. Wb
FUNGSI Ade Rismanto, S.T.,M.M.
A. RELASI DAN FUNGSI Indikator : siswa dapat
2. FUNGSI.
FUNGSI DAN GRAFIKNYA.
Relasi dan Fungsi Wahyu Dwi Lesmono, S.Si.
FUNGSI (Operasi Fungsi)
FUNGSI REF : 1. Rosen, Kenneth H., 2003, Discrete mathematics and its application, fifth-ed. 2. Keith Devlin, Set, function and logic, 2004.
Fungsi Komposisi.
FUNGSI KOMPOSIT Pertemuan IV.
Peta Konsep. Peta Konsep B. Komposisi Fungsi.
FUNGSI. PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan takkosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan.
Definisi 1: Dipunyai himpunan A dan B. Suatu fungsi f dari himpunan A ke B merupakan himpunan pasangan terurut f ⊆ A x B sedemikian sehingga memenuhi:
Relasi, Fungsi dan Grafik Kelompok 3 : Al Imron ( ) Bani Araya ( ) Febrija Izaty Siallagan ( ) M. Fadhil Al Fajri ( ) M.
Peta Konsep. Peta Konsep C. Invers Fungsi.
Persiapan Ujian Nasional SMA
Dosen Pengampu : GUNAWAN.ST.,MT
Fungsi Jaka Wijaya Kusuma M.Pd.
FUNGSI KOMPOSISI. Suatu relasi dari A ke B yang memasangkan setiap anggota A ke tepat satu anggota B disebut fungsi atau pemetaan dari A ke B Pengertian.
Komposisi FUNGSi Dan Fungsi invers
Mata Kuliah Matematika 1
KALKULUS I Limit Tak Hingga dan Limit di Tak Hingga
Matematika Diskrit Semester Genap TA Fungsi.
Transcript presentasi:

KALKULUS I FUNGSI-KOMPOSISI Dosen Pengampu : GUNAWAN.ST.,MT GUNAWAN.ST.,MT-STMIKBPN

Definisi Suatu relasi dari A ke B yang memasangkan setiap anggota A ke tepat satu anggota B disebut fungsi atau pemetaan dari A ke B

Notasi Fungsi Suatu fungsi atau pemetaan umumnya dinotasikan dengan huruf kecil. Misal, f adalah fungsi dari A ke B ditulis f: A → B A disebut domain B disebut kodomain

Range atau Daerah Hasil Jika f memetakan x  A ke y  B dikatakan y adalah peta dari x ditulis f: x → y atau y = f(x). Himpunan y  B yang merupakan peta dari x  A disebut range atau daerah hasil

Perhatikan gambar pemetaan f : A → B contoh 1 Perhatikan gambar pemetaan f : A → B f 1 2 3 4 5 a b c d domain adalah A = {a, b, c, d} kodomain adalah B = {1, 2, 3, 4, 5} A B

Perhatikan gambar pemetaan f : A → B 1 2 3 4 5 a b c d f(a) = 1, f(b) = 2 f(c) = 3, f(d) = 4 range adalah R = {1, 2, 3, 4} A B

contoh 2 Misal f: R → R dengan f(x) = √1 - x2 Tentukan domain dari fungsi f.

Jawab: Supaya f: R→R dengan f(x)=√1-x2 maka haruslah 1 – x2 ≥ 0. 1 – x2 ≥ 0 → x2 – 1 ≤ 0 atau (x-1)(x+1) ≤ 0 atau -1 ≤ x ≤ 1. Jadi, domain fungsi tersebut adalah -1 ≤ x ≤ 1.

contoh 3 Misal f: R → R dengan f(x – 1) = x2 + 5x Tentukan : a. f(x) b. f(-3)

Jawab Misal y = x – 1 maka x = y + 1 karena f(x – 1) = x2 + 5x maka f(y) = (y + 1)2 + 5(y + 1) f(y) = y2 + 2y + 1 + 5y + 5 f(y) = y2 + 7y + 6

f(y) = y2 + 7y + 6 a. f(x) = x2 + 7x + 6 b. f(-3) = (-3)2 + 7(-3) + 6 = 9 – 21 + 6 = -6

Komposisi Fungsi Penggabungan operasi dua fungsi secara berurutan akan menghasilkan sebuah fungsi baru. Penggabungan tersebut disebut komposisi fungsi dan hasilnya disebut fungsi komposisi.

A x B y C z g f x  A dipetakan oleh f ke y  B ditulis f : x → y atau y = f(x) y  B dipetakan oleh g ke z  C ditulis g : y → z atau z = g(y) atau z = g(f(x))

A B C x z y f g g o f maka fungsi yang memetakan x  A ke z  C adalah komposisi fungsi f dan g ditulis (g o f)(x) = g(f(x))

B A C g f a p b q contoh 1 f : A → B dan g: B → C didefinisikan seperti pada gambar Tentukan (g o f)(a) dan (g o f)(b) A B C a b p q 1 2 3 f g

Jawab: (g o f)(a) = ? B A C g f a p b q 1 2 3 f(a) = 1 dan g(1) = q Jadi (g o f)(a) = g(f(a)) = g(1)=q

Jadi (g o f) = g(f(b)) = g(3) = p (g o f)(b) = ? A B C a b p q 1 2 3 f g f(b) = 3 dan g(3) = p Jadi (g o f) = g(f(b)) = g(3) = p

contoh 2 Ditentukan g(f(x)) = f(g(x)). Jika f(x) = 2x + p dan g(x) = 3x + 120 maka nilai p = … .

Jawab: f(x) = 2x + p dan g(x) = 3x + 120 g(f(x)) = f(g(x)) g(2x+ p) = f(3x + 120) 3(2x + p) + 120 = 2(3x + 120) + p 6x + 3p + 120 = 6x + 360 + p 3p – p = 360 – 120 2p = 240  p = 120

Sifat Komposisi Fungsi Tidak komutatif: f o g ≠ g o f 2. Bersifat assosiatif: f o (g o h) = (f o g)o h = f o g o h 3. Memiliki fungsi identitas: I(x)= x f o I = I o f = f

contoh 1 f : R → R dan g : R → R f(x) = 3x – 1 dan g(x) = 2x2 + 5 Tentukan: a. (g o f)(x) b. (f o g)(x)

(g o f)(x) = g[f(x)] = g(3x – 1) Jawab: f(x) = 3x – 1 dan g(x) = 2x2 + 5 (g o f)(x) = g[f(x)] = g(3x – 1) = 2(3x – 1)2 + 5 = 2(9x2 – 6x + 1) + 5 = 18x2 – 12x + 2 + 5 = 18x2 – 12x + 7

(f o g)(x) = f[g(x)] = f(2x2 + 5) = 3(2x2 + 5) – 1 = 6x2 + 15 – 1 b. f(x) = 3x – 1 dan g(x) = 2x2 + 5 (f o g)(x) = f[g(x)] = f(2x2 + 5) = 3(2x2 + 5) – 1 = 6x2 + 15 – 1 (f o g)(x) = 6x2 + 14 (g o f)(x) = 18x2 – 12x + 7 (g o f)(x) ≠ (f o g )(x) tidak bersifat komutatif

contoh 2 f(x) = x – 1, g(x) = x2 – 1 dan h(x) = 1/x Tentukan: a. (f o g) o h b. f o (g o h)

Jawab: f(x) = x – 1, g(x) = x2 – 1 dan h(x) = 1/x ((f o g) o h)(x) = (f o g)(h(x)) (f o g)(x) = (x2 – 1) – 1 = x2 – 2 (f o g(h(x))) = (f o g)(1/x) = (1/x)2 – 2

f(x) = x – 1, g(x) = x2 – 1 dan h(x) = 1/x (f o (g o h))(x) = (f(g oh)(x)) (g o h)(x) = g(1/x) = (1/x)2 – 1 = 1/x2 - 1 f(g o h)(x) = f(1/x2 – 1) = (1/x2 – 1) – 1 =(1/x)2 – 2

contoh 3 I(x) = x, f(x) = x2 dan g(x) = x + 1 Tentukan: (f o I)(x) dan (g o I) (I o f) dan (I o g)

Jawab: I(x) = x, f(x) = x2 dan g(x) = x + 1 (f o I)(x) = x2 (g o I)(x) = x + 1 (I o f)(x) = x2 (I o g)(x) = x + 1 (I o f)(x) = (f o I) = f

Menentukan Suatu Fungsi Jika Fungsi Komposisi dan Fungsi Yang Lain Diketahui

Contoh 1 Diketahui f(x) = 3x – 1 dan (f o g)(x) = x2 + 5 Tentukan g(x)!

Jawab f(x) = 3x – 1 dan (f o g)(x) = x2 + 5 fg(x)] = x2 + 5 3.g(x) – 1 = x2 + 5 3.g(x) = x2 + 5 + 1 = x2 + 6 Jadi g(x) = ⅓(x2 + 6)

contoh 2 Diketahui g(x) = x + 9 dan (f o g)(x) = ⅓x2 – 6 maka f(x) = … .

Jawab: g(x) = x + 9 (f o g)(x) = f(g(x)) = ⅓x2–6 f(x + 9) = ⅓x2–6 Misal: x + 9 = y  x = y–9 f(y) = ⅓(y – 9)2 – 6

f(y) = ⅓(y – 9)2 – 6 = ⅓(y2 – 18y + 81) – 6 = ⅓y2 – 6y + 27 – 6 Jadi f(x) = ⅓x2 – 6x + 21

contoh 3 Diketahui f(x) = x – 3 dan (g of)(x) = x2 + 6x + 9 maka g(x – 1) = ….

Jawab: f(x) = x – 3; (g o f)(x) = g (f(x)) = x2+6x+9 g(x – 3) = x2 + 6x + 9 Misal: x – 3 = y  x = y + 3 g(y) = (y + 3)2 + 6(y + 3) + 9 = y2 + 6y + 9 + 6y +18 +9 g(y) = y2 + 6y + 9 + 6y +18 +9 = y2 + 12y + 36

g(x – 1) = (x – 1)2 + 12(x – 1) + 36 = x2 – 2x + 1 + 12x – 12 + 36 = x2 + 10x + 25 Jadi g(x – 1) = x2 + 10x + 25

Contoh 4 Diketahui f(x) = 2x + 1 dan (f o g)(x + 1)= -2x2 – 4x + 1 Nilai g(-2) =….

Jawaban: f(g(x + 1)) = -2x2 – 4x + 1 f(x) = 2x + 1 → f(g(x))= 2g(x) + 1 f(g(x + 1)) = 2g (x + 1) + 1 2g(x + 1) + 1 = -2x2 – 4x – 1 2g(x + 1) = -2x2 – 4x – 2 g(x + 1) = -x2 – 2x – 1

g(x + 1) = -x2 – 2x – 1 g(x) = -(x – 1)2 – 2(x – 1) – 1 g(2) = -(2 – 1)2 – 2(2 – 1) – 1 = -1 – 2 – 1 = -4 Jadi g(2) = - 4