JENIS DATA PENELITIAN Data kualitatif (qualitative data)

Slides:



Advertisements
Presentasi serupa
PERANAN STATISTIK DALAM PENELITIAN
Advertisements

Konsep dasar dan metoda penggunaannya dalam penelitian
Pengantar Statistik Sosial
BAB XII ANALISIS DAN INTREPRETASI DATA
COLLECTING DATA BY: E.B. SULISTIO, M.AP.
MPS 2 Kamis, 14 Oktober  Univariat Analysis: the examination of the distribution of cases on only one variable at a time.  Distribusi frekuensi:
STATISTIK???.
RAGAM DAN LANGKAH-LANGKAH PENELITIAN
Common Effect Model.
Kamis, 7 Oktober 2010 MPS 2.  A special case of existing statistics: it is reanalysis of previously collected survey or other data that were originally.
Regresi linier sederhana
Validitas & Reliabilitas
© 2002 Prentice-Hall, Inc.Chap 3-1 Bab 3 Pengukuran.
(MEASURES OF DISPERSION)
Pertemuan 02 Ukuran Numerik Deskriptif
ANALISIS DATA Ir. Indrawani Sinoem, MS.
IMAM ZAENUDIN, Perbedaan Hasil Belajar Siswa Antara Pembelajaran Menggunakan Model Contextual Teaching and Learning (CTL) dan Pembelajaran Konvensional.
1 Pertemuan 02 Ukuran Pemusatan dan Lokasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
UKURAN PENYEBARAN DATA
Appropriate Measures of Central Tendency Nominal variables Mode Ordinal variables Median Interval level variables Mean - If the distribution is normal.
Population and sample. Population is complete actual/theoretical collection of numerical values (scores) that are of interest to the researcher. Simbol.
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Pertemuan 03 Ukuran Penyimpangan (Variasi)
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
Medium for Teaching SMA Grade X Semester 2
Ukuran Pemusatan dan Lokasi Pertemuan 03 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Universitas Negeri Malang Oleh : SENO ISBIYANTORO ( ) STATISTIK PARAMETRIK & NON-PARAMETRIK.
Ukuran Penyimpangan atau Disversi Pertemuan 04
Jartel, Sukiswo Sukiswo
Pengantar Statistik Sosial
Analisis Data Kuantitatif
Pertemuan ke-23 Analisis Data (lanjutan) -Presentasi-
PENGOLAHAN & ANALISIS DATA
Irman Somantri, S.Kp., M.Kep.
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
ANALISIS DATA mustikalukmanarief.
ANALISIS DATA Dr. Susilo, M.Pd..
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Regresi.
DASAR-DASAR PENELITIAN KUALITATIF
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
Peramalan Data Time Series
ANALISIS DATA.
PENDUGAAN PARAMETER Pertemuan 8
the formula for the standard deviation:
Metode Penelitian Seminar Komunikasi Program Studi Ilmu Komunikasi
Pendugaan Parameter (II) Pertemuan 10
ANALISIS DATA I Made Sudarsana..
PENELITIAN DAN STATISTIK NON PARAMETRIK
DATA PENELITIAN DAN TEKNIK PENGUMPULANNYA
X bebas/ mempengaruhi / independent Y Terikat/ dipengaruhi / dependent
CENTRAL TENDENCY Hartanto, SIP, MA Ilmu Hubungan Internasional
Chapter 3 & 4 By: Lisa Kustina S.E.,MBA.
Fungsi Kepekatan Peluang Khusus Pertemuan 10
PENGOLAHAN DAN ANALISIS DATA.
STATISTIK???.
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
ANALISIS DATA Dr. Susilo, M.Pd..
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
Two Groups Too Many? Try Analysis of Variance
MARYANI SETYOWATI Mata Kuliah S1 – Kesehatan Lingkungan
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
PENELITIAN KUALITATIF
PERBEDAAN PENELITIAN KUANTITATIF DAN KUALITATIF
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
Metode Pengumpulan Data E. Syahrul
Transcript presentasi:

JENIS DATA PENELITIAN Data kualitatif (qualitative data) Data kuantitatif (quantitative data) January 11, 2019 Indawan Syahri

Peneliti adalah instrumen kunci DATA KUALITATIF Peneliti adalah instrumen kunci FIELDNOTES (catatan lapangan) TRANSCRIPTS from TAPED INTERVIEWS (transkip wawancara) DOCUMENTS (dokummen) PHOTOGRAPHIES (gambar/foto) Bogdan & Biklen (2000) January 11, 2019 Indawan Syahri

FIELDNOTES Data tertulis - apa yang peneliti dengar, lihat, alami, dan pikirkan Deskripsi - orang, objek, tempat, kejadian, aktifitas, dan percakapan Catatan lapangan merupakan alat yang utama pengumpul data dalam observasi participant observation nonparticipant observation. Catatan lapangan – data tambahan Data rekaman wawancara tidak merekam konteks yang berhungunag dengan penglihatan, impresi atau penilaian. January 11, 2019 Indawan Syahri

ISI FIELDNOTES (1) DESCRIPTIVE FIELDNOTES Gambaran subjek: Penampilan fisik, Cara berpakaian, Cara bertindak, Gaya berbicara, dan Aktivitas.. Rekonstruksi dialog: Parafrase, Ringkasan percakapan, Bahasa tubuh, Aksen, dan Raut muka Deskripsi tata fisik Contoh: pengaturan perabot ruangan Catatan kejadian tertentu. Catatan activitas Deskripsi tingka laku secara detail Observer’s behavior: Tingka laku, Assumsi, dll January 11, 2019 Indawan Syahri

ISI FIELDNOTES (2) 2. REFLECTIVE FIELDNOTES - observer’s comment “O.C.” Refleksi analisis Refleksi metode Refleksi dilema dan konflik Klarifikasi January 11, 2019 Indawan Syahri

Transkrip – data utama wawancara Transkrip - cakupan: TRANSKRIP WAWANCARA Transkrip – data utama wawancara Transkrip - cakupan: Siapa yang diwawancara Waktu wawancara Tempat wawancara Informasi penting lain Judul wawancara, contoh: “The first Day of School”. January 11, 2019 Indawan Syahri

DOKUMEN Dokumen personal Dokumen Resmi Dokumen Populer diaries personal letters autobiography Dokumen Resmi Dokumen internal Komunikasi eksternal Raport siswa Arsip personalia Dokumen Populer Video Film Majalah Televisi Iklan January 11, 2019 Indawan Syahri

GAMBAR /FOTO GAMBAR TERSEDIA (Found photographs) Memperlihatkan sosok individu atau kejadian yang diteliti Memberikan informasi faktual Memberikan gambaran sejarah GAMBAR YANG DIAMBIL LANGSUNG (Research-produced photographs) simplify the collection of factual information better grasp population distribution January 11, 2019 Indawan Syahri

DATA KUANTITATIF Statistik Deskriptif Statistik Inferensial January 11, 2019 Indawan Syahri

MEDIAN (the middle score) MEAN (the average of all scores) MEASURE 11/01/2019 MEASURE OF CENTRAL TENDENCY MODE (the most frequently occurring scores) MEDIAN (the middle score) MEAN (the average of all scores) Indawan Syahri

Measures of variability 11/01/2019 Measures of variability In order to describe the distribution of interval data, the measure of central tendency will not suffice. To describe the data more accurately, we have to measure the degree of variability of the data of the data from the measure of central tendency. There are 3 ways to show the data are spread out from the point, i.e. range, variance, and standard deviation. Indawan Syahri

MEASURES OF VARIABILITY 11/01/2019 MEASURES OF VARIABILITY RANGE (the highest minus the lowest score) VARIANCE (the square of Standard deviation STANDARD DEVIATION (the square root of variance Indawan Syahri

Range Range = X highest – X lowest 11/01/2019 Range = X highest – X lowest E.g. The youngest student is 17 and the oldest is 42, Range = 42 – 17 = 15 The age range in this class is 25. If range is so unstable, some researchers prefer to stabilize it by using the semi-interquartile range (SIQR) SIQR = Q3 – Q1 / 2 Q3 is the score at the 75th percentile and Q1 is the score at the 25th percentile. E.g., the score of the toefl score at the 75th percentile is 560 and 470 is the score at the 25th percentile. SIQR is 560 – 470 / 2 = 45 Indawan Syahri

Variance To see how close the scores are to the average for the test. 11/01/2019 Variance To see how close the scores are to the average for the test. E.g., if the mean score on the exam was 93.5 and a student got 89, the deviation of the score from the mean is 4.5. If we want a measure that takes the distribution of all scores into account, it is variance. To compute variance, we begin with the deviation of the individual scores from the mean. Stages: Compute the mean: X Subtract the mean from each score to obtain the individual deviation scores x = X – X. Square each individual deviation and add: ∑ x² Divide by N – 1: ∑ x²/ N - 1 Indawan Syahri

Statistik inferensial (1) Statistik – verifikasi teori– uji hipotesis Statistik parametrik Uji hubungan Contoh: Korelasi product moment Korelasi regresi Uji beda Tes-t Anova January 11, 2019 Indawan Syahri

Statistik inferensial (2) Statistik non-parametrik Uji hubungan Contoh: Korelasi tata jenjang Korelasi biserial Uji beda Chi square January 11, 2019 Indawan Syahri