INTRODUCTION INTERNAL FLOW

Slides:



Advertisements
Presentasi serupa
PEMINDAHAN BAHAN 1 ALIRAN DALAM PIPA.
Advertisements

FLUIDS. FLUIDS ? WHAT IS A FLUID ? THE IDEA OF SHEAR STRESS Mechanics is the study of force and motion  Fluid mechanics is the study of force and motion.
BAB IV ALIRAN FLUIDA DALAM PIPA
INSTALASI POMPA SENTRIFUGAL (single line installation)
KEHILANGAN ENERGI AKIBAT GESEKAN
FLUID STATICS Ver
Mekanika Fluida II Jurusan Teknik Mesin FT. UNIMUS Julian Alfijar, ST
Mekanika Teknik III (Strength of Materials)
Introduction to Convection
ALIRAN VISKOS VISKOSITAS DINAMIK
Matakuliah : K0614 / FISIKA Tahun : 2006
FLUIDA PRINSIP KPP Oleh : Siti Nurhasanah
RIZKI ARRAHMAN KELAS C. ALIRAN FLUIDA DALAM PIPA  Sistem perpipaan adalah suatu sistem yang banyak digunakan untuk memindahkan fluida, baik.
MOTOR BAKAR Kuliah I.
PRESENTASI MEKANIKA FLUIDA KELOMPOK 6
HEAT PUMP DAN HEAT ENGINE
PERSAMAAN ENERGI UMUM Persamaan Bernoulli : tinggi [Energi/berat]
FISIKA FLUIDA yusronsugiarto.lecture.ub.ac.id
Exercise Problem No. 5 Figure below shows a diagram of fluid power system for a hydraulic press used to extrude rubber patrs. The following data are known.
Mekanika Fluida Jurusan Teknik Sipil Pertemuan: 4.
Pertemuan 3 PEMBEBANAN DAN TEGANGAN
PERALATAN PENGUKURAN 5. Anemometer Alat ini digunakan untuk mengukur kecepatan angin. Berbagai macam anemometer yaitu : a. Thermo anemometer These instruments.
Simple Stresses in Machine Parts
ETAPRIMA SAFETY ENGINEERING
A. Agung Putu Susastriawan., ST., M.Tech
Refrigeration Heat Pump.
Gunawan. SISTEM PENILAIAN KKomponen Penilaian : AAbsensi (10 %) TTugas/Quis (10 %) UUjian I (mid semester) (40 %) UUjian II (akhir semester)
2.6 Friction in pipe flow Aldila Pupitaningrum Ifa Kumala RL.
1 CTC 450 ► Bernoulli’s Equation ► EGL/HGL. Bernoulli’s Equation 2
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
2.1. FLUIDA SEBAGAI CONTINUUM
Mekanika Fluida Minggu 01
Mekanika Fluida Minggu 04
Bab 8 : ALIRAN INTERNAL VISCOUS INKOMPRESIBEL
Kekekalan Energi Volume Kendali
Analisis Energi Volume Atur
TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA
Creatif by : Nurlia Enda
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
ZUHERNA MIZWAR METFLU - UBH ZUHERNA MIZWAR
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 3.
FISIKA DASAR Pertemuan ke-3 Mukhtar Effendi.
Mekanika Fluida Tipe-tipe fluida, pengaruh temperatur dan tekanan pada viskositas, tekanan uap, tegangan permukaan by yanasari, SSi.
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 5.
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 4.
Two-and Three-Dimentional Motion (Kinematic)
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 5.
HIDROLIKA Konsep-konsep Dasar.
MODUL 2: ALIRAN BAHAN CAIR Dr. A. Ridwan M.,ST.,M.Si,M.Sc.
Perpindahan Panas Minggu 07
BAHAN AJAR FISIKA FLUIDA DINAMIS
FLUID MECHANICS MM Diah Susanti, Ph.D.
Chapter VIII Fluid Mechanics
RANGKAIAN LISTRIK 1.
The Global Gas Storage Industry & Trends In The Capital Investment: Ken Research.
PRINSIP-PRINSIP PERPINDAHAN PANAS KONVEKSI BAB 4.
Hidraulika.
Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS
Capter 2 Fluids.
DRAG AND LIFT Lecturer: Yosua Heru Irawan Department of Mechanical Engineering Sekolah Tinggi Teknologi Nasional.
DRAG COEFFICIENTS OF COMMON GEOMETRIES
Mechanical Energy & Efficiency
HEAT CONDUCTION IN CYLINDERS & SPHERES
Chapter 3 PROPERTIES OF PURE SUBSTANCES
HEAT CONDUCTION IN SPHERES
Lecturer Slide: Yosua Heru Irawan
Heat Transfer From Extended surface (Fin)
Pertemuan 9 Analisis Massa & Energi Pada Control Volume (1)
Pertemuan 3 PRESSURE Yosua Heru Irawan Lecture slides by
BERNOULLI EQUATIONS Lecture slides by Yosua Heru Irawan.
Transcript presentasi:

INTRODUCTION INTERNAL FLOW Fluid Mechanics: Fundamentals and Applications 3rd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2014 INTRODUCTION INTERNAL FLOW Lecture slides by Yosua Heru Irawan

Internal flows through pipes, elbows, tees, valves, etc Internal flows through pipes, elbows, tees, valves, etc., as in this oil refinery, are found in nearly every industry.

Objectives Memahami analisis aliran di dalam pipa (laminar dan turbulen) Menghitung kerugian minor & mayor pada aliran dalam pipa (sistem perpipaan) dan menentukan daya pompa yang dibutuhkan Memahami beberapa Teknik pengukuran velocity dan flow rate (keuntungan dan kerugiannya)

8–1 ■ INTRODUCTION Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications and fluid distribution networks. The fluid in such applications is usually forced to flow by a fan or pump through a flow section. We pay particular attention to friction, which is directly related to the pressure drop and head loss during flow through pipes and ducts. The pressure drop is then used to determine the pumping power requirement. Mengapa pipa penampang lingkaran lebih mampu menahan pressure yang besar dibanding pipa penampang persegi (duct)?

Average velocity Vavg is defined as the average speed through a cross section. For fully developed laminar pipe flow, Vavg is half of the maximum velocity.

8–2 ■ LAMINAR AND TURBULENT FLOWS Laminar flow is encountered when highly viscous fluids such as oils flow in small pipes or narrow passages. Laminar: Smooth streamlines and highly ordered motion. Turbulent: Velocity fluctuations and highly disordered motion. Transition: The flow fluctuates between laminar and turbulent flows. Most flows encountered in practice are turbulent. The behavior of colored fluid injected into the flow in laminar and turbulent flows in a pipe. Laminar and turbulent flow regimes of candle smoke.

Reynolds Number The transition from laminar to turbulent flow depends on the geometry, surface roughness, flow velocity, surface temperature, and type of fluid. The flow regime depends mainly on the ratio of inertial forces to viscous forces (Reynolds number).

The hydraulic diameter Dh = 4Ac/p is defined such that it reduces to ordinary diameter for circular tubes. For flow through noncircular pipes, the Reynolds number is based on the hydraulic diameter For flow in a circular pipe: In the transitional flow region of 2300  Re  10,000, the flow switches between laminar and turbulent seemingly randomly.

8–3 ■ THE ENTRANCE REGION Velocity boundary layer: Daerah aliran di mana efek dari gaya geser viskos yang disebabkan oleh viskositas fluida dirasakan. Boundary layer region: Efek viskos dan perubahan kecepatan sangat signifikan. Irrotational (core) flow region: Pada daerah ini Efek gesekan dapat diabaikan dan kecepatan konstan dalam arah radial. The development of the velocity boundary layer in a pipe (laminar flow)

Hydrodynamic entrance region: Daerah dari pipa masuk ke titik di mana boundary layer menyatu di garis tengah. Hydrodynamic entry length Lh: Panjnag hydrodynamic entry region. Hydrodynamically developing flow: Daerah di mana profil kecepatan berkembang Hydrodynamically fully developed region: Daerah dimana profil kecepatan sudah tidak berubah Fully developed: Profil kecepatan dan profil temperatur sudah tidak berubah Hydrodynamically fully developed In the fully developed flow region of a pipe, the velocity profile does not change downstream, and thus the wall shear stress remains constant as well.

The pressure drop is higher in the entrance regions of a pipe, and the effect of the entrance region is always to increase the average friction factor for the entire pipe. The variation of wall shear stress in the flow direction for flow in a pipe from the entrance region into the fully developed region.

Coba: Air mengalir pada sebuah saluran dengan kecepatan rata-rata 2 m/s, diketahui viskositas kinematic air 0,8E10-6 m2/s. Tentukan jenis aliran yang terjadi pada saluran tersebut. Saluran penampaang lingkaran ( D = 10 cm ) Saluran penampang persegi (Panjang sisi s = 10 cm) Saluran penampang persegi Panjang (lebar = 10 cm dan tinggi 5 cm) Saluran terbuka (lebar 10 cm dan tinggi kolom air 5 cm)