Pertemuan 4 Ukuran Pemusatan

Slides:



Advertisements
Presentasi serupa
UKURAN PEMUSATAN DAN UKURAN LETAK
Advertisements

Ukuran Pemusatan dan Ukuran Penyebaran
UKURAN PEMUSATAN DAN UKURAN LETAK
BAB VI UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi) (Pertemuan ke-8) Oleh: Andri Wijaya, S.Pd., S.Psi., M.T.I. Program Studi Sistem Informasi Sekolah.
BAB 3 UKURAN PEMUSATAN.
UKURAN TENDENSI SENTRAL DAN PENYIMPANGAN
UKURAN PEMUSATAN Rata-rata (average) : mempunyai kecenderungan memusat
Denny Agustiawan JURUSAN TEKNIK INFORMATIKA STMIK ASIA MALANG
UKURAN PEMUSATAN Rata-rata (average) : B A B V
UKURAN TENDENSI Ukuran Penyebaran (measure of variability)
UKURAN PEMUSATAN DAN LETAK DATA
Prepared: TOTOK SUBAGYO, ST,MM
Sesi-2: DISTRIBUSI FREKUENSI
NILAI TENGAH Nilai rata-rata (mean) adalah nilai yang dianggap cukup representatif untuk menggambarkan nilai-nilai yang terdapat dalam suatu data. Nilai.
TENDENSI SENTRAL.
Indikator Kompetensi Dasar :
BAB 3 UKURAN PEMUSATAN.
KUARTIL, DESIL, DAN PERSENTIL
Gejala Pusat dan Ukuran Letak
(NILAI TENGAH/ NILAI SENTRAL)
UKURAN PEMUSATAN Merupakan nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk.
NURRATRI KURNIA SARI, M.Pd
UKURAN PEMUSATAN DATA Sub Judul.
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
Ukuran Pemusatan (Central Tendency)
BAB V ukuran pemusatan Dipersiapkan oleh : Ely Kurniawati
BAB 5 UKURAN NILAI PUSAT.
BAB 3 UKURAN PEMUSATAN.
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
UKURAN-UKURAN STATISTIK
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
UKURAN PEMUSATAN (NILAI SENTRAL) DISPERSI, SKEWNES DAN KURTOSIS
Ukuran Pemusatan - Data Tunggal
Ukuran Pemusatan (1).
BAB 3 UKURAN PEMUSATAN.
Ukuran Pemusatan - Data Berkelompok
UKURAN PEMUSATAN Rata-rata (average) : B A B V
Statistika Deskriptif BINA SARANA INFORMATIKA Jl. Cut Mutiah No.88 Bekasi Statistika Deskriptif keluar Home Menu Utama Rata2 Hitung Ukuran Gejala.
BAB 3 UKURAN PEMUSATAN.
STATISTIKA.
BIO STATISTIKA JURUSAN BIOLOGI
UKURAN PEMUSATAN Rata-rata (average) : B A B 2
UKURAN PEMUSATAN DATA BERKELOMPOK
STATISTIKA DESKRIPTIF
jumlah bilangan-bilangan dibagi oleh banyaknya bilangan.
NURRATRI KURNIA SARI, M.Pd
BAB 3 UKURAN PEMUSATAN.
Ukuran Pemusatan - Data Tunggal
UKURAN PEMUSATAN Rata-rata (average) : B A B V
Ukuran Pemusatan Data Choirudin, M.Pd
Ukuran Pemusatan (2).
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
Ukuran Pemusatan Data Choirudin, M.Pd
UKURAN PENYEBARAN DATA
DISTRIBUSI FREKUENSI.
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
CHAPTER 1 DESKRIPSI DATA
CHAPTER 1 DESKRIPSI DATA
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
UKURAN PEMUSATAN ( Median, dan Modus)
UKURAN PEMUSATAN Rata-rata (average) :
Ukuran Pemusatan dan Ukuran Penyebaran
UKURAN LETAK & KERAGAMAN
BAB 3 UKURAN PEMUSATAN.
STATISTIK DESKRIPTIF.
UKURAN PEMUSATAN Rata-rata (average) : B A B V
UKURAN PEMUSATAN DAN LETAK DATA
BAB 3 UKURAN PEMUSATAN.
PEMUSATAN DAN LETAK DATA
Ukuran Pemusatan - Data Tunggal
Transcript presentasi:

Pertemuan 4 Ukuran Pemusatan Disarikan dari berbagai sumber

Ukuran Pemusatan dan Ukuran Penyebaran Tujuan Pembelajaran : Memahami dan mengerti tentang ukuran pemusatan Mampu mencari nilai Rata-rata hitung, Median, Modus, Kuartil Desil dan Persentil pada data yang tidak dikelompokkan dan pada data yang dikelompokkan Memahami plus minusnya ukuran pemusatan : rata-rata hitung, median dan modus Memahami dan mengerti tentang ukuran penyebaran Dapat menghitung Deviasi standar pada data populasi maupun pada data sampel Memahami penggunaan Koefisien Variasi

Ukuran Pemusatan Ukuran Pemusatan menunjukkan di mana suatu data memusat atau suatu kumpulan pengamatan memusat (mengelompok) Pada umumnya data akan memusat pada nilai-nilai : Rata-rata hitung, Median dan Modus Rata-rata hitung Jumlah semua nilai data Rata-rata hitung = ------------------------------------ Banyaknya data

Ukuran Pemusatan Rata-rata hitung Pada data yang tidak dikelompokkan contoh : 5 8 4 7 9 _ 5 + 8 + 4 + 7 + 9 X = ----------------------- = 6,6 5

Rata-rata hitung Ukuran Pemusatan Tabel 1 Kelas Batas Kelas ttk tengah f x.f 1 2 3 4 5 6 7 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 - 89 24,5 34,5 44,5 54,5 64,5 74,5 84,5 8 12 9 98 241,5 356 654 580,5 596 169 50 2695

Ukuran Pemusatan Untuk data yang dikelompokkan Rata-rata hitung : _ X = 2695 / 50 = 53,9

Median Ukuran Pemusatan Median adalah nilai yang berada di tengah, yang membagi dua jumlah data sama banyak (setelah data diurut). Pada data yang tidak dikelompokkan Data diurut dari nilai kecil ke besar Tentukan posisi median = (n+1)/2 Tentukan nilai median Contoh : data : 9 5 7 8 4 5 Sort data : 4 5 5 7 8 9 Posisi median = (6+1)/2 = 3,5 Nilai median pada posisi 3,5 adalah 6

Median Ukuran Pemusatan Pada data yang dikelompokkan Md : Nilai Median B : Tepi batas bawah kelas median F : frekuensi kumulatif sebelum kelas median fm : frekuensi pada kelas median i : interval kelas median Contoh : Lihat tabel blkng cara penghitungan md Md = 49,5 + [( 25 – 19) / 12] x 10 Md = 54,5

Cara penghitungan median

Modus Ukuran Pemusatan Modus adalah nilai yang paling sering muncul. Pada data yang dikelompokkan Mo = Nilai Modus B = Tepi Batas Bawah kelas modus d1= beda frekuensi antara kelas modus dg kelas sebelumnya d2 = beda frekuensi antara kelas modus dg kelas sesudahnya i = interval kelas modus

Modus Ukuran Pemusatan Contoh : Lihat tabel 1 Tentukan kelas modusnya (kelas yg memiliki frekuensi terbesar) : 50 – 59 d1 = 12 – 8 = 4 d2 = 12 – 9 = 3 Mo = 49,5 + [4 / (4+3)] 10 = 55,21

Plus Minus Rata-rata hitung, Median dan Modus Ukuran Pemusatan Kelebihan Kekurangan Rata-rata hitung Mempertimbangkan semua nilai Dapat menggambarkan mean populasi Cocok untuk data homogen (rasio) Peka atau mudah terpengaruh oleh nilai ekstrim Kurang baik unutk data heterogen Median Tidak terpengaruh oleh data ekstrim Cocok untuk data heterogen ( nominal) Tidak mempertimbangkan semua nilai Kurang dapat menggambarkan mean populasi Modus Tidak terpengaruh oleh nilai ekstrim Cocok untuk data homogen/heterogen Open ended data Kurang menggambarkan mean populasi Modus bisa lebih dari satu

Ukuran Letak Kuartil : membagi data menjadi 4 bagian sama banyak. Q1 Q2 Q3 Pada data yang tidak dikelompokkan 1. Data diurut (dari kecil ke besar) 2. Tentukan posisi (letak) kuartil = LK Posisi Qi adalah [i(n+1) / 4] i = 1, 2, 3 3. Tentukan nilai kuartil = NK = Qi NK = NKB + (LK – LKB) x (NKA-NKB) NKB : Nilai kuartil yg berada di bawah letak kuartil NKA : Nilai kuartil yg berada di atas letak kuartil LKB : Letak data yg berada di bawah letak kuartil

Kuartil Ukuran letak Contoh : Data : 5 7 3 9 11 9 Tentukan nilai Q1 ! Data diurut : 3 5 7 9 9 11 Posisi (Letak) Kuartil 1 LK1 = [1(6+1) / 4] = 1,75 Nilai kuartil 1 = Q1 Q1 = 5 + (1,75 -1) x (5-3) = 6,5 Latihan : Tentukan Q3 !

Kuartil Pada data yang dikelompokkan Tentukan kelas yg terdapat letak Qi. Tentukan nilai Qi i = 1,2,3 Qi = Nilai kuartil ke – i B = Tepi batas bawah kelas kuartil n = jumlah frekuensi F = frekuensi kumulatif sebelum kelas kuartil f = frekuensi pada kelas kuartil c = interval kelas kuartil

Kuartil Contoh : data dari tabel 1 Tentukan Q3 ! 1. Tentukan kelas yg terdapat letak Q3 : (3/4 x 50) = 37,5 yaitu kelas : 60 - 69 2. Tentukan Nilai Q3 : Q3 = 59,5 + [ (37,5 – 31)/9 ] x 10 = 66,72

Desil Ukuran letak Desil : membagi data menjadi 10 bagian sama banyak D1 D2 D3 D4 D5 D6 D7 D8 D9 Cara menecari nilai desil, prinsipnya sama dg cara mencari nilai kuartil. Bedanya pada menentukan posisi (letak) desil (LD) yaitu : Pada data yang tidak dikelompokkan LD = i (n+1) / 10 i = 1, 2, 3, …., 10

Desil Ukuran letak Pada data yang dikelompokkan Tentukan kelas yg terdapat letak Di. Tentukan nilai Di i = 1,2,3,4,5,6,7,8,9 Di = Nilai desil ke – i B = Tepi batas bawah kelas desil n = jumlah frekuensi F = frekuensi kumulatif sebelum kelas desil f = frekuensi pada kelas desil c = interval kelas desil

Persentil Ukuran letak Persentil : membagi data menjadi 100 bagian sama banyak. P1 P2 P3 P98 P99 Cara menecari nilai persentil, prinsipnya sama dg cara mencari nilai kuartil. Bedanya pada menentukan posisi (letak) persentil (LP) yaitu : Pada data yang tidak dikelompokkan LP = i (n+1) / 100 i = 1, 2, 3, …., 100

Persentil Ukuran letak Pada data yang dikelompokkan Tentukan kelas yg terdapat letak Pi. Tentukan nilai Pi i = 1,2,3,4,……,99 Pi = Nilai persentil ke – i B = Tepi batas bawah kelas persentill n = jumlah frekuensi F = frekuensi kumulatif sebelum kelas persentil f = frekuensi pada kelas persentil c = interval kelas persentil

Ukuran Penyebaran Ukuran Penyebaran menggambarkan bagaimana suatu kelompok data menyebar terhadap pusat data. Macam-macam ukuran penyebaran : > Jarak (Range) Jarak = Nilai terbesar – nilai terkecil > Deviasi rata-rata (MD)

Ukuran Penyebran > Deviasi Standar Pada data yang tidak dikelompokkan Untuk data populasi : Untuk data sampel :

Deviasi Standar Contoh : Data populasi : 5 3 7 5 8 2  = 5  = 2,08 Data sampel : 5 3 7 5 8 2 s = 2,28

Pada data yang dikelompokkan Deviasi Standar Pada data yang dikelompokkan Batas Kelas x f x.f (x-)² 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 - 89 24,5 34,5 44,5 54,5 64,5 74,5 84,5 4 7 8 12 9 2 98 241,5 356 654 580,5 596 169 864.36 376.36 88.36 0.36 112.36 424.36 936 50 2695 f.(x-)² 3457.44 2634.52 706.88 4.32 1101.24 3394.88 1872.72 13082

Ukuran Penyebaran Relative Digunakan untuk membandingkan dua atau lebih distribusi. Koefisien Variasi Untuk data populasi Untuk data sampel

Soal Latihan Berikut Nilai UTS Statistika Ekonomi 15 mahasiswa D3 FE Gunadarma : 45 78 95 65 88 70 55 65 81 90 52 73 65 55 67 Tentukan : 1.  2.  3. Md 4. Mo 5. KV 6. Q3 7. D6 8. P82

Soal Latihan Berikut data Berat badan 50 mhs D3 FE Gunadarma Tentukan : 1.  2.  3. Md 4. Mo 5. Q3 6. D7 7. P15 Berat Badan (kg) Frekuensi 50 – 54 55 – 59 60 – 64 65 – 69 70 – 74 75 - 79 5 9 15 11 6 4 50