Konsep Aplikasi Data Mining

Slides:



Advertisements
Presentasi serupa
BAB 13 U SING D ATA W AREHOUSE FOR B USINESS I NTELLIGENCE Moh. Muslih Rizal Ario Kiky Cahyaning H Nursyakhroini.
Advertisements

OLAP - PERTEMUAN 8 – OLAP.
Pertemuan #2 OLAP.
SAP/Software Application and Product
BASIS DATA LANJUTAN.
Desain Sistem Informasi Bab : Proses Bisnis
Data Warehouse dan Decision Support
OLAP dalam Data Warehouse
DIFERENSIASI. Different = Berbeda Divergen = mencari hal BERBEDA dari suatu hal yang SAMA.
Business Intelligence
Pengenalan Data Warehouse
Robert Groth, “Data Mining: Building Competitive Advantage”, chap 2
P EMROGRAMAN S ISTEM B ASIS D ATA Chapter I Database Sistem.
Data Mining.
DATA WAREHOUSING IN SQL SERVER 2005/2008 BUSINESS INTELLIGENCE.
Modul-Modul Paket ERP Presented by: Purdianta.
Data Warehouse dan Data Mining
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
KONSEP STRATEGI BISNIS DAN IMPLIKASINYA PADA STRATEGI IS/IT
©2000 Prentice Hall Objectives  Course Organization  Tasks of Marketing  Major Concepts & Tools of Marketing  Marketplace Orientations  Marketing’s.
Arsitektur Data Warehouse
Konsep dan Teknik Data Mining
Phase III Rapid Prototyping and Demonstration Prototype
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
E-Marketing Plan.
Pertemuan VIII Dimensional Modelling. Relational Database Model FMMFFMMF Anderson Green Lee Ramos Attribute 1 Name Attribute 2 Age Attribute.
Informasi Dalam Praktik
INTRODUCTION OF DATA WAREHOUSE
Data Warehouse dan Data Mining
Penambangan data Pertemuan 2.
MARKETING INFORMATION SYSTEMS AND THE SALES ORDER
Chapter 6 Foundations of Business Intelligence: Databases and Information Management.
Datamart dan Datawarehouse
PEMBANDINGAN KINERJA JEDOX PALO VERSI 1. 0c DENGAN VERSI 2
E-Marketing Plan Pertemua 8.
UNIT 1 - Introduction SAP01 - SAP FUNDAMENTAL 2015
Agus Aan Jiwa Permana, S.Kom., M.Cs
Pertemuan 17 Materi : Buku Wajib & Sumber Materi :
4. Disiplin Ilmu, Metode Penelitian dan Computing Methods
Data Mining.
DATA MART Pertemuan ke-3.
Enterprise Resource Planning (ERP)
Pendahuluan.
Aplikasi dan Trend dalam Data Mining
Sistem Pustaka Data (Data Warehouse)
ARSITEKTUR DATA WAREHOUSE
E-Marketing Research.
Operator Summary Slice Dice Drill-down Roll-up Pivot
Desain Sistem Informasi Bab : Proses Bisnis
KELOMPOK 6 Nama Kelompok: Lulus Irmawati ( )
INTRODUCTION OF DATA WAREHOUSE
INTRODUCTION OF DATA WAREHOUSE
Desain Sistem Informasi Bab : Proses Bisnis
Analisis Multidimensional
Oleh : Rahmat Robi Waliyansyah, M.Kom.
SELLING SKILL FITB DIVISION.
Enhancing Decision Making
INFORMASI UNTUK BERBAGAI USER DW
Defri Kurniawan DATA dan INFORMASI Defri Kurniawan
Introduction to Data Warehouse By: Marcello Singadji
Konsep Aplikasi Data Mining
Pendahuluan.
Silabus Business Intelligent (IN335)
Skema Star (Dalam RDBMS)
Konsep Aplikasi Data Mining
Konsep dan Aplikasi Data Mining
Konsep Aplikasi Data Mining
SISTEM PENUNJANG KEPUTUSAN UNTUK SISTEM INFORMASI MANAJEMEN.
SISTEM PENDUKUNG KEPUTUSAN
Rank Your Ideas The next step is to rank and compare your three high- potential ideas. Rank each one on the three qualities of feasibility, persuasion,
Transcript presentasi:

Konsep Aplikasi Data Mining Dr. Tb. M. Akhriza, S.Si.,MMSI Credit: Eka Yuniar, S.Kom., MMSI

SAP 1. Menjelaskan Definisi KDD 2. KDD Life Cycle 3. Data Warehouse 4. OLAP 5. Macam-macam OLAP 6. Arsitektur KDD 7. Arsitektur OLAP

Apa itu KDD??

Knowledge Discovery in Database Definition ”the non-trivial extraction of implicit, previously unknown and potentially useful knowledge from data” (Fall, 2003) Knowledge discovery in databases (KDD) is the process of discovering useful knowledge from a collection of data. (Romi, 2010)

Mengapa Menggunakan KDD ??

Mengapa menggunakan KDD? Untuk mencari trend dan korelasi/hubungan/relation dalam data base dan dapat membantu untuk mencari informasi. Dengan tujuan : Efektif/ to more effective Menghemat waktu/ to save time Menguntungkan/to make more money Kualitas produk/to improve product quality to etc.

Application Marketing Market segmentation Customer Classification future sales Prediction Product Maintenance product interest from customer Definition

Human Resource Management Define an employee compensation Define an employee punishment Finance Detect fraudulent use of credit cards Etc…

KDD Life Cycle

OnLine Analytical Processing (OLAP) ”the dynamic synthesis, analysis, and consolidation of large volumes of multi-dimensional data” Focuses on multi-dimensional relationships among existing data records

Olap Vs. SQL OLAP : Menambahkan Analisis dalam Tools SQL : eksekusi roll-up, drill-down, slice, dice, pivot dari DW

OLAP differs from data mining – OLAP tools provide quantitative analysis of multi-dimensional data relationships – Data mining tools create and evaluate a set of possible problem solutions (and rank them) • Ex: Propose 3 marketing strategies and order them based on marketing cost and likely sales income

Architectures for OLAP Ada 3 Arsitektur for OLAP – Relational OLAP (ROLAP) – Multi-dimensional OLAP (MOLAP) – Managed Query Environment (MQE)

ROLAP

MOLAP

MQE

Cycle of SQL

KDD Architecture

Terima Kasih