PRINSIP-PRINSIP EKONOMI DALAM MANAJEMEN USAHA TANI TERNAK Prinsip ekonomi dalam proses produksi diartikan sebagai kaidah-kaidah atau asumsi yang dapat dipakai dalam menggunakan sumber-sumber yang terbatas dalam proses produksi agar tercapai hasil yang optimal. Sumber daya diartikan sebagai input atau pengorbanan untuk menghasilkan output tertentu. Dalam menghasilkan suatu produk atau input dapat dipengaruhi oleh produk yang lain.
Hubungan Input-Output Di dalam proses produksi untuk menghasilkan suatu produk dapat dipengaruhi oleh satu atau beberapa faktor. Secara matematis hubungan input dengan output digambarkan sebagai berikut : Y = f (X1, X2, X3,.....Xn) Y merupakan produk yang dihasilkan dengan menggunakan faktor-faktor nonproduksi seperti kapital (X1), tanah (X2), tenaga kerja (X3) dan faktor-faktor lain (Xn). Dalam hubungan input-output ini biasanya di dalam proses produksi, manajemen dihadapkan kepada memilih/menambah level suatu input tertentu dengan menganggap factor yang lain tetap atau konstan. Keadaan ini digambarkan sebagai : Y = f (X1/X2, X3,.......Xn),
X1 bersifat variabel, sedang yang lain konstan. Tanda ”l” adalah memberi batasan mana yng variabel dan mana yang bersifat tetap. Ada beberapa macam hubungan antara input dan output : Hubungan input-output yang bersifat constant productivity Fenomena ini menggambarkan pada setiap penambahan unit input pada suatu kegiatan produksi, akan memberikan tambahan hasil yang tetap pada setiap kenaikan input berikutnya. Karena kenaikan tersebut bersifat tetap, maka bila digambarkan akan berbentuk garis lurus.
Hubungan costant productivity Input X (unit) Tambahan input ΔX Hasil Y Tambahan Hasil ΔY Produk Marginal ΔY/ΔX 10 20 30 40 - 1.336 1.444 1.552 1.660 1.768 108 10,8
Hubungan yang bersifat increasing productivity (produktivitas naik) Fenomena ini menggambarkan terjadi penambahan hasil yang meningkat pada pemberian input tambahan berikutnya. Pada gambar tsb terlihat bahwa gambar kurva makin ke atas shg mjd garis cembung thd garis horisontal Kurva demikian tjd krn ΔY/ΔX makin lama makin lebih besar
Hubungan decreasing productivity (produktivitas menurun) Fenomena ini menggambarkan hubungan bilamana terjadi tambahan input pada suatu variable (yang lain konstan) maka tambahan hasil yang didapat akan menurun. Atau terjadi penurunan penambahan hasil pada setiap menambahkan input berikutnya. Keadaan ini sering terjadi pada proses produksi pertanian.
Produktivitas menurun x berupa pakan konsentrat y berupa produksi susu Input X (unit) Tambahan input ΔX Hasil Y Tambahan Hasil ΔY Produk Marginal ΔY/ΔX 2 4 6 8 - 5,89 9,41 12,37 15,03 3,52 2,96 2,66 2,94 1,76 1,48 1,33
Hubungan Kombinasi Di dalam proses produksi pertanian, biasanya berupa hubungan yang mula-mula bersifat increasing yang dilanjutkan dengan hubungan yang bersifat decreasing productivity setelah variabel yang diberikan relative telah cukup. Kombinasi ini merupakan fenomena produksi pertanian dan dinyatakan dalam hukum penambahan hasil yang menurun atau law of diminishing return. Hukum ini berlaku untuk produk penambahan hasil (produk marginal)
PRODUKSI PERTANIAN YG MENGALAMI LAW OF DIMINISHING RETURN UNIT INPUT X ∆ X PT Y ∆ Y Y/X PM ∆Y/ ∆X 1 2 3 4 5 6 7 8 9 10 - 18 27 37 42 46 48 -2 -4 6,8 7,4 6,6 5,1 4,2 6 LAJU 8 TAMBAH 4 LAJU 2 TURUN
Dr tabel di atas bila digambarkan akan tampak kurva produksi total (KPT) akan naik dg laju yg bertambah yg diakhiri dg laju yg menurun Dr KPT dpt diturunkan dua kurva lain yg ada kaitannya satu sama lain Kedua kurva tsb disusun msng2 oleh PM & PR. Di antara ketiga kurva KPT, KPM & KPR mempunyai hub.satu sama lain.
Hub. tsb berupa : Hub.produk marginal & produk total a) pd saat KPT naik, mk kurva PM selalu positif
2) hubungan antara KPM & MPR Pd saat KPM & KPR sama2 naik, mk KPM selalu di atas KPR, pd saat itu KPR terus naik Pd saat KPM & KPR sama2 turun mk KPR di atas KPM Pd saat KPM=KPR mk KPR max Hub. di atas dpt pula diartikan bhw utk menaikkan (menurunkan) PR mk tambahan yg dipakai utk menghitung produk rata2 baru harus di atas (di bwh) rata2 semula
Dr hub.ketiga kurva di atas dpt ditarik manfaat yg penting dlm memilih penyelenggaraan produksi Artinya dr hal tsb dpt dipilih saat kpn tjd produksi yg optimum yg akan memberi hasil yg max. Fungsi produksi/kurva total produksi tsb dpt dibagi ke dlm 3 phase /daerah :
Phase (1) adalah phase /daerah yg meliputi dr input sama dgn nol sampai produk rata2 max / saat PR=PM Phase (2) adalah daerah yg dimulai dr PR max sampai PM sama dg nol,/ pd saat PT max Phase (3) adalah daerah yg dimulai pd saat PM negatif / pd saat PT turun secara absolut
Elastisitas Produksi Elastisitas produksi adalah suatu angka yang menunjukkan persentase perubahan pada output akibat adanya persentase perubahan dari suatu input atau ratio antara perubahan produksi dengan perubahan input EP = ∆Y/Y : ∆X/X → Ep = PM/PR Ketentuan ini dapat diberlakukan : Bila PM = PR maka Ep = 1 Bila PM = 0 maka Ep = 0
Bila PM > PR maka Ep > 1 Akibat dari keadaan tersebut maka : Daerah I mempunyai elastisitas > = 1 Daerah II mempunyai elastisitas > = 1 dan > = 0 Daerah III mempunyai elastisitas < = 0 Dalam proses produksi daerah I dan III disebut daerah irasional karena pada kedua daerah tersebut masing-masing keuntungan masih dapat ditambah (daerah I) dan keuntungan akan merugi (daerah III). Daerah II disebut daerah rasional, yaitu daerah di mana manajer harus memilih input untuk menghasilkan keuntungan yang maksimal.
Di titik mana I daerah rasional tersebut terdapat keuntungan yang maksimum masih tergantung kepada harga input dan outputnya. Daerah II ini merupakan daerah pusat perhatian dari para pengambil keputusan (decision maker/manajer). Secara efisiensi teknis, terjadi maksimum keuntungan pada saat produk rata-rata mencapai maksimum, tetapi efisiensi ekonomis letaknya masih tergantung pada harga input dan outputnya.
PENENTUAN INPUT PD DAERAH II Utk memilih berapa input dipakai dlm suatu proses produksi agar tjd keuntungan terbaik, perlu dikenal 2 pengertian NILAI PRODUK MARGINAL (MVP) PENAMB.PENDAPATN TAMBAHN UNIT INPUT ∆ NILAI PT NPM = ————————— ∆ LEVEL INPUT NILAI PT = JMLH PT X HARGA JUAL BIAYA / NILAI INPUT MARGINAL (MIC) PERUB.ONGKOS INPUT TOT. TAMBAHN UNIT INPUT ∆ BIAYA TOTAL INPUT NIM = ————————————— BIAYA TOTAL INPUT = JMLH INPUT X HARGA INPUT
Pengambilan Keputusan Utk mendptkan nilai optimum dr level input dlm proses produksi mk contoh tabel berikut dpt memberi gambaran Dlm proses produksi ini, level input 0 sampai dg 10 dipakai utk menghasilkan output tertentu Bila harga input tertentu misalnya Rp. 12,00/unit & harga output Rp 2,00/unit mk input keberapa harus dipilih dlm produksi dpt diketahui. Utk mendapatkannya perlu diperbandingkan NPM dg NIM
Nilai optimum input dlm proses produksi Level input Total produk (TP) PM Nilai Total Produksi (NTP) NPM NIM 1 2 3 4 5 6 7 8 9 10 12 30 44 54 62 68 72 74
Dlm tabel tsb mula2 NPM>NIM , ini berarti tambahan pendapatan yg diterima pd penggunaan tambahan satu unit input masih lebih besar drpd biaya input yg dipakai Jd dpt diartikan tambahan penghasilan masih terus dpt dicapai Keadaan ini terus berlangsung sampai pd pemakaian level input 6 Pd level ini tambahan biaya akan sama dg tambhan income (NPM=NIM) Pemakaian input lebih besar drpd 6, akan menyebabkan nilai NPM lebih kecil drpd nilai NIM, yg berarti keuntungan semakin kecil
Oleh krn itu mk keuntungan max akan tjd pd pemakaian input yg memberi NPM=NIM NTP/nilai produk total /pendapatan max tdk selalu diikuti dg keuntungan max Dr tabel tsb NTP tertinggi tjd pd pemakaian input 8, sedangkan keuntungan tertinggi tercapai pd level 6.
OUTPUT YANG DIHASILKAN PROFIT MAX NPM = NIM (∆Y/∆X = Px/Py) MR = MC (PM = BM) MR = PERUB.PENDAPATAN AKIBAT PERUB.PRODUKSI ∆ PENDAPATAN TOTAL MR = ———————————— ∆ PRODUKSI TOTAL ∆ PENDAPATAN TOTAL = ∆ PRODUKSI TOT. X HARGA MC = PERUB.BIAYA AKIBAT TAMBAHAN HASIL ∆ BIAYA TOT. INPUT MC = ——————————— NILAI MC AWAL TURUN NAIK PD PENAMB.INPUT
MR & MC DARI FUNGSI PRODUKSI LEVEL INPUT (UNIT) PT PM TR MR MC 1 2 3 4 5 6 7 8 9 10 12 30 44 54 62 68 72 74 71 - 18 14 -2 -4
HUBUNGAN INPUT INPUT MR = MC LEVEL INPUT 6 LABA MAX MC > MR PRODUKSI TDK LAGI BERI LABA MAX HUBUNGAN INPUT INPUT LEBIH DR 1 FAKT. SIFAT VARIABEL HUB. SIFAT INPUT2 /FAKTOR2 /SLNG SUBSTITUSI Y = f (X1,X2 / X3, X4, …..Xn) X1 & X2 = SIFAT VARIABEL & YG LAIN TETAP PENGGUNAAN 2 FAKT. DLM PROSES PROD.PERLU : KOMBINSI OPTIML PENGG.KE2 INPUT LABA MAX KOMBINSI YG BERI LEAST COST UTK OUTPUT TTT