TEORI PENDUGAAN STATISTIK

Slides:



Advertisements
Presentasi serupa
PENGUJIAN HIPOTESIS SAMPEL BESAR
Advertisements

PENGUJIAN HIPOTESIS SAMPEL KECIL
BAB 13 PENGUJIAN HIPOTESA.
Ramadoni Syahputra, ST, MT
VI. ESTIMASI PARAMETER Estimasi Parameter : Metode statistika yang berfungsi untuk mengestimasi/menduga/memperkirakan nilai karakteristik dari populasi.
BAB 3 PENARIKAN SAMPEL DAN PENDUGAAN
Ekonometrika Metode-metode statistik yang telah disesuaikan untuk masalah-maslah ekonomi. Kombinasi antara teori ekonomi dan statistik ekonomi.
PENGUJIAN HIPOTESIS SAMPEL BESAR
ESTIMASI.
PENGUJIAN HIPOTESIS SAMPEL BESAR
PENGUJIAN HIPOTESIS SAMPEL BESAR
Pendugaan Parameter Pendugaan Titik dan Pendugaan Selang
Statistika Inferensi : Estimasi Titik & Estimasi Interval
ESTIMASI.
BAB 14 PENGUJIAN HIPOTESIS SAMPEL KECIL
PENARIKAN SAMPEL & PENDUGAAN PARAMETER
RANK FULL MODEL (VARIANCE ESTIMATION)
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
TEORI PENDUGAAN STATISTIK
BAB 11 METODE DAN DISTRIBUSI SAMPLING
TEORI PENDUGAAN STATISTIK
PENDUGAAN PARAMETER Luh Putu Suciati 29 Maret 2015.
D0124 Statistika Industri Pertemuan 15 dan 16
Oleh : Taufik, S.Si.. OUTLINE STATISTIKA II METODE DAN DISTRIBUSI SAMPLING Teori Pendugaan Statistik Pengujian Hipotesis Secara Statistik Analisis Regresi.
Estimasi (Pendugaan) TOPIK Pengertian Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Interval Estimasi interval.
PENGUJIAN HIPOTESIS SAMPEL BESAR
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Statistika Inferensi : Estimasi Titik & Estimasi Interval
TEORI PENDUGAAN (TEORI ESTIMASI)
Kuliah ke 9 ESTIMASI PARAMETER SATU POPULASI
MODUL II ESTIMASI ATAU PENDUGAAN
PENAKSIRAN PARAMETER Statistika digunakan untuk menyimpulkan popoulasi yaitu: Secara sampling (pengukuran pada sampel) Secara sensus ( pengukuran dilakukan.
Estimasi Topik Pembahasan: Konsep estimasi (pendugaan statistik)
PENAKSIRAN PARAMETER.
STATISTIKA INFERENSIAL
Statistika Inferensi : Estimasi Titik & Estimasi Interval
Bagian I Statistik Induktif Metode dan Distribusi Sampling
KONSEP DASAR STATISTIK
SAMPLING DAN DISTRIBUSI SAMPLING
Bab 2. Teori Pendugaan PENDUGAAN TUNGGAL
Statistika Inferensi : Estimasi Titik & Estimasi Interval
Bab 4. Teori Penarikan Sampel
Resista Vikaliana, S.Si.MM
TEORI PENDUGAAN (TEORI ESTIMASI)
PENGUJIAN HIPOTESIS SAMPEL BESAR
Zulkarnain Ishak PSIE Pasca Sarjana Unsri 2007
STATISTIK II Pertemuan 5: Interval Konfidensi Dosen Pengampu MK:
Uji Hipotesis.
STATISTIK Pertemuan 6: Interval Konfidensi Dosen Pengampu MK:
TEORI PENDUGAAN STATISTIK
BAB 3 PENARIKAN SAMPEL DAN PENDUGAAN
ESTIMASI.
Bab 5. Teori Pendugaan PENDUGAAN TUNGGAL
BAB 11 METODE DAN DISTRIBUSI SAMPLING
Confidence interval & estimation Zulkarnain Ishak 2007 PSIE Unsri.
STATISTIK Pertemuan 6: Teori Estimasi (Interval Konfidensi)
BAB 14 PENGUJIAN HIPOTESIS SAMPEL KECIL
Estimasi.
TEORI PENDUGAAN STATISTIK
Pengantar Statistika Bab 1 DATA BERPERINGKAT
UKURAN VARIASI ATAU DISPERSI (Pengukuran Varians)
PENDUGAAN INTERVAL Yang dimaksud dengan Pendugaan Interval adalah suatu dugaan terhadap parameter berdasarkan suatu interval, di dalam interval mana kita.
PENDUGAAN PARAMETER STATISTIK
Statistika Inferensi : Estimasi Titik & Estimasi Interval
PENGUJIAN HIPOTESIS SAMPEL BESAR
TEORI PENDUGAAN SECARA STATISTIK
STATISTIKA 2 3. Pendugaan Parameter I OLEH: RISKAYANTO
PERTEMUAN Ke- 5 Statistika Ekonomi II
TEORI PENDUGAAN (TEORI ESTIMASI)
PENDUGAAN STATISTIK Tita Talitha, MT. PENDAHULUAN Konsep pendugaan statistik diperlukan untuk membuat dugaan dari gambaran populasi. Konsep pendugaan.
Transcript presentasi:

TEORI PENDUGAAN STATISTIK BAB 12 TEORI PENDUGAAN STATISTIK

Bagian I Statistik Induktif Teori Pendugaan Statistik OUTLINE Bagian I Statistik Induktif Metode dan Distribusi Sampling Teori Pendugaan Statistik Pengujian Hipotesa Sampel Besar Pengujian Hipotesa Sampel Kecil Analisis Regresi dan Korelasi Linier Analisis Regresi dan Korelasi Berganda Pengertian Teori dan Kegunaan Pendugaan Pendugaan Interval Kesalahan Standar dari Rata-rata Hitung Sampel Menyusun Interval Keyakinan Interval Keyakinan Rata-rata dan Proporsi Interval Keyakinan Selisih Rata-rata dan Proporsi Pendugaan Titik Parameter Konsep Dasar Persamaan Simultan Memilih Ukuran Sampel Bab 12 Teori Pendugaan Statistik

PENDUGA TUNGGAL SEBAGAI FUNGSI UNSUR POPULASI Standar Deviasi s2 = 1  (Xi - ) 2 n - 1 s2 = 1 {(X1 - ) 2 + (X2 - x) 2 + … + (Xn - ) 2} X atau S = f( X1, X2, …, X n) di mana: = 1 Xi n = 1 (X1 + X2 + … + X n) X X X f( 2) X f( 3) f( 1) Bab 12: Teori Pendugaan Statistik Pendugaan Titik Paraneter

SIFAT-SIFAT PENDUGA Penduga Tidak Bias Unbiased estimator Penduga Efisien Efficient estimator Penduga Konsisten Consistent estimator Bab 12: Teori Pendugaan Statistik Pendugaan Titik Paraneter

penduga tidak bias Penduga Tidak Bias Penduga bersifat tidak bias Jika di dalam sampel random yang berasal dari populasi, rata-rata atau nilai harapan (expexted value, ) dari statistik sampel sama dengan parameter populasi () atau dapat dilambangkan dengan E( ) =  X E( ) = X Penduga bersifat bias E( )   X Bab 12: Teori Pendugaan Statistik Pendugaan Titik Paraneter

Penduga efisien Penduga Efisien Penduga yang efisien adalah penduga yang tidak bias dan mempunyai varians terkecil (sx2) dari penduga-penduga lainnya. sx12 < sx22 sx12 sx22 Bab 12: Teori Pendugaan Statistik Pendugaan Titik Paraneter

Penduga Konsisten Penduga Konsisten Penduga yang konsisten adalah nilai dugaan ( ) yang semakin mendekati nilai yang sebenarnya  dengan semakin bertambahnya jumlah sampel (n). X n tak terhingga n sangat besar n besar n kecil Bab 12: Teori Pendugaan Statistik Pendugaan Titik Paraneter

Pendugaan interval Pendugaan interval menyatakan jarak di dalam mana suatu parameter populasi mungkin berada. Bab 12: Teori Pendugaan Statistik Pendugaan Interval

Rumus interval pendugaan (s – Zsx < P < s + Zsx ) = C S : statistik yang merupakan penduga parameter populasi (P) P : parameter populasi yang tidak diketahui Sx : standar deviasi distribusi sampel statistik Z : suatu nilai yang ditentukan oleh probabilitas yang berhubungan dengan pendugaan interval, Nilai Z diperoleh dari tabel luas di bawah kurva normal C : Probabilitas atau tingkat keyakinan yang dalam praktek sudah ditentukan dahulu s – Zsx : nilai batas bawah keyakinan s + Zsx : nilai batas atas keyakinan Bab 12: Teori Pendugaan Statistik Pendugaan Interval

Menentukan jumlah sampel tiap stratum Contoh: Z =2,58 Z =-2,58 0= 0.50 Z=1,96 Z=-1,96 0,50 X 95% 99% Pada gambar terlihat untuk interval keyakinan 95% terhubungkan dengan nilai Z antara –1,96 sampai 1,96. Ini dapat diartikan juga bahwa 95% dari rata-rata hitung sampel akan terletak di dalam  1,96 kali standar deviasinya. Sedangkan untuk keyakinan 99%, maka rata-rata hitungnya juga akan terletak di dalam  2,58 kali standar deviasinya. Interval keyakinan juga dapat dituliskan untuk C= 0,95 adalah   1,96x dan untuk C=0,99 adalah   2,58sx. Bab 12: Teori Pendugaan Statistik Pendugaan Interval

Menentukan jumlah sampel tiap stratum Contoh: 0.50 Z=1,96 Z=-1,96 0,50 0,4750 0,95/2 = 0,50/2 = 0,025 Luas kurva adalah 1 dan simetris yaitu sisi kanan dan kiri luasnya sama yaitu 0,5. Nilai C= 0,95 apabila dibagi menjadi dua bagian simetris maka menjadi 0,4750 yang diperoleh dari 0,95/2. Apabila digunakan tabel luas di bawah kurva normal untuk probabilitas 0,4750 maka akan diperoleh nilai Z sebesar 1,96. Begitu juga untuk C= 0,99, maka probabilitasnya adalah 0,99/2 = 0,4950, nilai probabilitas ini terhubung dengan nilai Z= 2,58. Setelah menemukan nilai Z dan standar deviasinya, maka dapat dibuat interval keyakinan dengan mudah misalnya untuk C= 0,95 adalah P( – 1,96sx < m < + 1,96sx) = 0,95 sedang untuk C= 0,99 adalah P( – 2,58sx < m < + 2,58sx) = 0,99. X X Bab 12: Teori Pendugaan Statistik Pendugaan Interval

Menentukan jumlah sampel tiap stratum x = –1,96sx Contoh: x1 = interval 1 mengandung µ x2 = interval 1 mengandung µ x95 = interval 95 mengandung µ x95 = interval 95—100 tidak mengandung µ Pada gambar di atas terlihat bahwa interval 1 dengan nilai rata-rata interval 95 dengan rata-rata 95 mengandung nilai parameternya yaitu dan hanya 96 sampai 100 atau 5% interval saja yang tidak dari statistik mengandung . Jadi interval keyakinan C= 95 dapat diartikan bahwa sebanyak 95% interval mengandung nilai parameter aslinya yaitu  dan hanya 5% interval saja yang tidak mengandung parameternya. X X X Bab 12: Teori Pendugaan Statistik Pendugaan Interval 12

Kesalahan standar Kesalahan standar dari rata-rata hitung sampel adalah standar deviasi distribusi sampel dari rata-rata Bab 12: Teori Pendugaan Statistik Kesalahan Standar dari Rata-rata Hitung Sampel

Rumus kesalahan standar Untuk populasi yang tidak terbatas n/N < 0,05: : Standar deviasi populasi sx : Standar error/kesalahan standar dari rata-rata hitung sampel n : Jumlah atau ukuran sampel N : Jumlah atau ukuran populasi n s = sx 1 - s = N n Untuk populasi yang terbatas n/N > 0,05: sx Bab 12: Teori Pendugaan Statistik Kesalahan Standar dari Rata-rata Hitung Sampel

Interval keyakinan rata-rata hitung Pengantar Statistika Bab 1 Interval keyakinan rata-rata hitung Rumus interval keyakinan rata-rata hitung X  Z /2s/n Untuk populasi yang terbatas, faktor koreksi menjadi  (N–n)/N-1. Nilai merupakan rata-rata dari sampel, sedangkan nilai Z untuk beberapa nilai C Tingkat Keyakinan C/2 Nilai Terdekat Nilai Z 0,99 0,495 0,4951 2,58 0,98 0,490 0,4901 2,53 0,95 0,475 0,4750 1,96 0,90 0,450 0,4505 1,65 0,85 0,425 0,4251 1,44 0,80 0,400 0,3997 1,28 Bab 12: Teori Pendugaan Statistik Menyusun Interval Keyakinan

Interval keyakinan rata-rata hitung Berdasarkan pada nilai Z dan diasumsikan bahwa n>30 maka dapat disusun interval beberapa keyakinan sebagai berikut:  2,58 s/n 99%  2,33 s/n 98%  1,96 s/n 95%  1,65 s/n  1,44 s/n Bab 12: Teori Pendugaan Statistik Menyusun Interval Keyakinan

Interval keyakinan rata-rata hitung Interval keyakinan tersebut dapat juga digambarkan sebagai berikut: Batas bawah Batas atas 1 -   /2  /2 -Z /2  Z /2 Nilai parameter yang sebenarnya diharapkan akan terdapat pada interval 1 -  dengan batas bawah -Z /2 dan batas atas Z /2. Bab 12: Teori Pendugaan Statistik Menyusun Interval Keyakinan

Skema proses interval keyakinan Mulai Identifikasi masalah Menentukan sampel (n) dan nilai rata-rata Populasi Tidak Terbatas  Z/2 s/n Menentukan Keyakinan(C atau = (1 – C) dan Nilai Z Populasi Terbatas  Z/2 s/(N - n)/N-1 X X X Bab 12: Teori Pendugaan Statistik Interval Keyakinan Rata-rata dan Proporsi

Probabilitas (  Z/2 sx ) = C Distribusi & standar deviasi populasi Distribusi Sampling: Normal Standar Deviasi Populasi: Diketahui Probabilitas ( – Z/2 x <  < (  Z/2 s/(N – n)/N – 1n sx ) = C atau Probabilitas (  Z/2 sx ) = C X X X : Rata-rata dari sampel Z/2 : Nilai Z dari tingkat kepercayaan   : Rata-rata populasi yang diduga x : Standar error / kesalahan standar dari rata-rata hitung sampel C : Tingkat keyakinan  : (1 – C) X Bab 12: Teori Pendugaan Statistik Interval Keyakinan Rata-rata dan Proporsi

Distribusi & standar deviasi populasi Distribusi Sampling: Normal Standar Deviasi Populasi: Tidak Diketahui Standar error untuk populasi yang terbatas dan n/N > 0,05: Standar error untuk populasi tidak terbatas Distribusi t dengan n=25 Distribusi normal standar Distribusi t dengan n=15 Distribusi t dengan n=5 Bab 12: Teori Pendugaan Statistik Interval Keyakinan Rata-rata dan Proporsi

Distribusi & standar deviasi Distribusi Sampling: Mendekati Normal Standar Deviasi Populasi: Tidak Diketahui ( – t/2 sx<  < ( + t/2 sx ) X X : Rata-rata dari sampel t/2 : Nilai t dari tingkat kepercayaan  : Rata-rata populasi yang diduga sx : Standar error/kesalahan standar dari rata-rata hitung sampel C : Tingkat keyakinan  : 1 – C X Bab 12: Teori Pendugaan Statistik Interval Keyakinan Rata-rata dan Proporsi

Distribusi & standar deviasi Untuk populasi yang tidak terbatas Untuk populasi yang terbatas Rumus pendugaan proporsi populasi Probabilitas (p - Z/2.Sp<P< p + Z/2.Sp) p : Proporsi sampel Z/2: Nilai Z dari tingkat keyakinan  P :Proporsi populasi yang diduga Sp : Standar error/kesalahan dari proporsi C :Tingkat keyakinan  :1 – C Bab 12: Teori Pendugaan Statistik Interval Keyakinan Rata-rata dan Proporsi

Interval keyakinan untuk selisih rata-rata Probabilitas (( - ) - Z/2. x1-x2) < ( - ) < ( - ) + Z/2. x1-x2) Di mana standar error dari nilai selisih rata-rata adalah: Apabila standar deviasi dari populasi tidak ada, maka dapat diduga dengan standar deviasi sampel yaitu: Di mana: x1-x2 : Standar deviasi selisih rata-rata populasi sx1-x2 : Standar error selisih rata-rata sx1, sx1: Standar deviasi sampel dari dua populasi n1, n2: Jumlah sampel setiap populasi X2 X1 Bab 12: Teori Pendugaan Statistik Interval Keyakinan Rata-rata Selisih dan Proporsi

Interval keyakinan untuk selisih proporsi Probabilitas Probabilitas ((p1-p2) - Z/2. sp1-p2) <(P1-P2) < (p1-p2) + Z/2. sp1-p2) Di mana standar error dari nilai selisih proporsi adalah: p1, p2 : Proporsi sampel dari dua populasi Sp1, sp1: Standar error selisih proporsi dari dua populasi n1, n2 : Jumlah sampel setiap populasi Bab 12: Teori Pendugaan Statistik Interval Keyakinan Rata-rata Selisih dan Proporsi

Bab 12: Teori Pendugaan Statistik Memilih Ukuran Sampel Faktor ukuran sampel Faktor yang memengaruhi jumlah sampel: Tingkat keyakinan yang dipilih Kesalahan maksimum yang diperbolehkan Variasi dari populasi Bab 12: Teori Pendugaan Statistik Memilih Ukuran Sampel

Bab 12: Teori Pendugaan Statistik Memilih Ukuran Sampel Rumus jumlah sampel untuk menduga rata-rata populasi Rumus jumlah sampel dalam populasi dirumuskan sebagai berikut: Rumus tersebut diturunkan dari interval keyakinan sebagaimana diuraikan sebagai berikut: P (–Za/2 < Z < Za/2 ) = C = 1 – a (–Za/2 < ( – m)/(s/Ön) < Za/2) (–Za/2 (s/Ön) < ( – m) < Za/2(s/Ön)) (x – m) < Za/2(s/Ön); ingat bahwa error e = – m e < Za/2(s/Ön); e2 = (Za/2)2(s2/n); n = [(Za/2.s)/e]2 n = [(Za/2.s)/e]2 Bab 12: Teori Pendugaan Statistik Memilih Ukuran Sampel

Bab 12: Teori Pendugaan Statistik Memilih Ukuran Sampel Rumus jumlah sampel untuk menduga rata-rata populasi Untuk mendapatkan rumus jumlah sampel dalam pendugaan proporsi populasi dapat diturunkan sebagai berikut: P (–Za/2 < Z < Za/2 ) = C = 1 – a (–Za/2 < (p1 – p2)/(s/Ön) <Za/2) (–Za/2(Ö[(p(1 – p)]/n – 1) < (p1 – p2) < Za/2(Ö[p(1– p)]/n–1) (p1 – p2) < Za/2(Ö[(p(1 – p)]/n – 1); ingat bahwa error e = p1 – p2 e < Za/2(Ö[(p(1 – p)]/n – 1); dikuadratkan kedua sisi menjadi e2 = (Za/2)2[(p(1 – p)]/n – 1; dipindahkan n – 1 ke sisi kiri n –1 = (Za/2.)2 p(1 – p) sehingga n menjadi e2 n = (Za/2.)2 p(1 – p) + 1 Bab 12: Teori Pendugaan Statistik Memilih Ukuran Sampel

T E R I M A K S H