BAB 5 ROTASI KINEMATIKA ROTASI

Slides:



Advertisements
Presentasi serupa
BAB 5 Dinamika Rotasi 5.1 Momen Inersia 5.2 Torsi 5.3 Momentum Sudut
Advertisements

BAB 5 ROTASI KINEMATIKA ROTASI
BENDA PADA PEGAS VERTIKAL
Berkelas.
Dinamika Rotasi Hubungan Gerak Translasi dan Rotasi
GERAK MENGGELINDING.
KESEIMBANGAN BENDA TEGAR
Dinamika Rotasi.
Kesetimbangan Benda Tegar Gabungan Energi Kinetik Rotasi dan Translasi
HUKUM-HUKUM NEWTON tentang GERAK
3.
Dinamika Rotasi.
GERAK LURUS Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan konsep.
KESEIMBANGAN BENDA TEGAR
4. DINAMIKA.
Kesetimbangan Benda Tegar Gabungan Energi Kinetik Rotasi dan Translasi
DINAMIKA ROTASI Pertemuan 14
DINAMIKA PARTIKEL PEMAKAIN HUKUM NEWTON.
DINAMIKA PARTIKEL.
Kesetimbangan Benda Tegar Gabungan Energi Kinetik Rotasi dan Translasi 1 by Fandi Susanto.
ROTASI Pertemuan 9-10 Mata kuliah : K0014 – FISIKA INDUSTRI
12. Kesetimbangan.
Andari Suryaningsih, S.Pd., MM.
Matakuliah : D0684 – FISIKA I
Sistem Partikel dan Kekekalan Momentum.
Torsi dan Momentum Sudut Pertemuan 14
Kesetimbangan Benda Tegar Gabungan Energi Kinetik Rotasi dan Translasi
DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR
BENDA TEGAR Suatu benda yang tidak mengalami perubahan bentuk jika diberi gaya luar F Jika pada sebuah benda tegar dengan sumbu putar di O diberi gaya.
DINAMIKA BENDA (translasi)
Bab 6 Momentum Sudut dan Rotasi Benda Tegar
ROTASI.
Dinamika Rotasi-2.
 P dW .d dW .d ke + d dW dt d dt  T
Dinamika Rotasi Keseimbangan Benda Tegar Titik Berat.
Matakuliah : K0614 / FISIKA Tahun : 2006
Momen inersia? What.
Sebuah benda bermassa 5 kg terletak pada bidang datar yang licin dari keadaan diam, kemudian dipercepat 5 m/s2 selama 4 sekon. Kemudian bergerak dengan.
Uji Kompetensi Sabtu, 2 Maret 2013
Dinamika Rotasi (a) Sebuah benda tegar (rigid) sembarang bentuk yg berputar terhadap sumbu tetap di 0 serta tegak lurus bidang gambar. Garis 0P, garis.
LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER
Gambar 8.1 MODUL 8. FISIKA DASAR I 1. Tujuan Instruksional Khusus
GERAK TRANSLASI, ROTASI DAN KESEIMBANGAN BENDA TEGAR
Soal dan Pembahasan EBAS Gasal Tahun Pelajaran 2010/2011
Latihan Soal Dinamika Partikel
DINAMIKA BENDA (translasi)
KINEMATIKA ROTASI Pertemuan 13
Sistem Partikel dan Kekekalan Momentum.
GERAK MENGGELINDING.
Perpindahan Torsional
GERAK TRANSLASI, GERAK ROTASI, DAN KESEIMBANGAN BENDA TEGAR
Standar Kompetensi Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar Menformulasikan hubungan.
ROTASI BENDA TEGAR M I S T A KELAS C.
ROTASI KINEMATIKA ROTASI
D I N A M I K A Teknik Mesin-Institut Sains & Teknologi AKPRIND.
MOMENTUM SUDUT DAN BENDA TEGAR
DINAMIKA ROTASI 2 Disusun Oleh: Ryani Oktaviana Nurfatimah ( )
DINAMIKA ROTASI dan KESETIMBANGAN BENDA TEGAR
Dinamika HUKUM NEWTON.
Hubungan Gerak Translasi dan Rotasi Energi Kinetik Rotasi dan Momen Inesia Momen Inersia dan Momen Gaya.
MOMEN GAYA DAN MOMENTUM SUDUT PARTIKEL TUNGGAL
GERAK MENGGELINDING.
Kesetimbangan Rotasi dan Dinamika Rotasi
IMPULS - MOMENTUM GAYA IMPULS. Suatu benda jika mendapat gaya sbesar F, maka pada benda akan terjadi perubahan kecepatan. Apakah gaya F bekerja dalam waktu.
Dinamika Rotasi & Kesetimbangan Benda Tegar
Perpindahan Torsional
DYNAMIC PARTICLE Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan.
ROTASI KINEMATIKA ROTASI
KERJA DAN ENERGI  Definisi Kerja atau Usaha :  Energi Potensial Gravitasi: Kerja yang diperlukan untuk membawa benda dari suatu posisi ke posisi lain.
Kemampuan dasaryang akan anda miliki setelah mempelajari bab ini adalah sebagai berikut. Dapat memformulasikan hubungan antara konsep torsi, momentum.
Transcript presentasi:

BAB 5 ROTASI KINEMATIKA ROTASI Bila terjadi perubahan sudut dalam selang waktu tertentu, didefinisikan kecepatan sudut rata-rata sebagai : Bila terjadi perubahan kecepatan sudut dalam selang waktu tertentu, didefinisikan percepatan sudut rata-rata sebagai :  = Sudut [radian]  Kecepatan sudut [radian/s]  Percepatan sudut [radian/s2 ] t Waktu [s]

Kecepatan dan percepatan sudut sesaat : Persamaan-persamaan kinematika rotasi :

Contoh Soal 5.1 Sebuah roda gila (grindstone wheel) berputar dengan percepatan konstan sebesar 0,35 rad/s2. Roda ini mulai berputar dari keadaan diam (o = 0) dan sudut mula-mulanya o = 0. Berapa sudut dan kecepatan sudutnya pada saat t=18 s ? Jawab :

Contoh Soal 5.2 Dalam suatu analisis mesin helikopter diperoleh informasi bahwa kecepatan rotornya berubah dari 320 rpm menjadi 225 rpm dalam waktu 1,5 menit ketika mesinnya dihentikan. a). Berapa percepatan sudut rata-ratanya ? a). Berapa lama baling-balingnya berhenti ? b). Berapa kali baling-balingnya berputar sampai berhenti ? Jawab :

Hubungan antara kecepatan linier dan kecepatan sudut Hubungan antara percepatan linier dan percepatan sudut

Momen Inersia (rotasi)  massa (translasi) Untuk sistem partikel energi kinetiknya : I disebut momen inersia dari sistem partikel Untuk benda tegar momen inersianya dapat dihitung dari :

Contoh Soal 5.3 Suatu sistem terdiri dari dua buah benda bermassa sama m yang dihubungkan dengan sebuah batang kaku sepanjang L dengan massa yang dapat diabaikan. a). Bila sistem tersebut berputar dengan sumbu ditengah batang tentukan momen inersianya b). Tentukan momen inersianya bila berputar dengan sumbu pada ujung batang Jawab :

Hukum Newton II untuk rotasi : DINAMIKA ROTASI Sebuah benda berputar pada suatu sumbu disebabkan karena adanya momen gaya atau torka/torsi (torque) Hukum Newton II untuk rotasi : KERJA DAN DAYA ROTASI

a). Percepatan sudut pada saat dilepaskan Contoh Soal 5.4 Sebuah batang homogen bermassa 1,5 kg sepanjang 2 m dapat berputar pada salah satu ujungnya. Mula-mula batang ini berada dalam keadaan diam dan membuat sudut 40o terhadap horisontal seperti terlihat pada gambar di bawah ini. Hitung : a). Percepatan sudut pada saat dilepaskan b). Kecepatan sudut pada posisi horisontal disebelah kiri Mg 40o R

Jawab : Mg 40o R

Contoh Soal 5.5. Sebuah batang homogen bermassa 0,5 kg sepanjang 80 cm dapat berputar pada salah satu ujungnya. Mula-mula batang ini berada dalam keadaan horisontal seperti terlihat pada gambar di bawah ini. Bila diberi kecepatan sudut awal sebesar 5 rad/s, tentukan : a). Momen inersia batang tersebut, I b). Momen gaya yang dialami pada saat horisontal, o c). Percepatan sudut awal, o d). Kecepatan sudut pada posisi vertikal, 

Jawab : o mg  ho h = 0 L/2

Momentum Sudut Momentum sudut didefinisikan sebagai perkalian antara momen inersia dan kecepatan sudut Hukum Newton II : Hukum kekekalan momentum sudut :

Contoh Soal 5.6 Sebuah cakram (disk) dengan momen inersia I1 berputar dengan kecepatan sudut I terhadap poros yang licin. Cakram ini jatuh mengenai cakram lain dengan momen inersia I2 yang sedang diam. Akibat gesekan pada permukaannya cakram lain ini ikut berputar sampai akhirnya mempunyai kecepatan sudut yang sama. Tentukan kecepatan sudut akhir ini. Jawab :

Contoh Soal 5.7 Sebuah komedi putar mempunyai jari-jari 2 m dan momen inersia sebesar 500 kgm2. Seorang anak bermassa 25 kg berlari sepanjang garis yang tangensial terhadap tepi komedi putar yang semula diam dengan kecepatan 2,5 m/s dan melompat seperti terlihat pada gambar. Akibatnya komedi putar bersama-sama dengan anak tersebut ini berputar. Hitung kecepatan sudut komedi putar tersebut. Jawab :

Gerak Menggelinding Sebuah bola menggelinding di atas bidang datar tanpa slip Titik kontak antara bola dan bidang datar bergerak sejauh s Pusat massa terletak di atas titik kontak juga bergerak sejauh s Kondisi menggelinding :

Bola bergerak translasi dengan kecepatan v tanpa rotasi,sehingga baik titik kontak maupun titik puncak mempunyai kecepatan yang sama dengan kecepatan pusat massa. Bola berputar dengan kecepatan sudut  tanpa translasi, sehingga kecepatan pusat massa nol sedangkan kecepatan titik kontak dan titik puncak mempunyai kecepatan yang sama tetapi berlawanan arah sebesar R

Bola menggelinding (translasi dan rotasi dengan v = R), sehingga kecepatan titik kontak nol, kecepatan pusat masa v dan kecepatan titik puncak 2v Tidak ada gerakan relatip antara bola dan bidang datar, gaya gesekan statik, karena diam  tidak ada energi yang hilang

Contoh Soal 5.7 Sebuah bola berjari-jari 12 cm dan bermassa 30 kg sedang menggelinding tanpa slip pada sebuah lantai horisontal dengan kecepatan 2 m/s. Berapa energi kinetiknya ? Jawab :

Contoh Soal 5.8 Sebuah bola bermassa M dan berjari-jari R dilemparkan sedemikian rupa sehingga saat menyentuh lantai ia bergerak secara horisontal dengan kecepatan 5 m/s dan tidak berputar. Koefisien gesekan kinetik antara bola dan lantai adalah 0,3. a). Berapa lama bola meluncur sebelum menggelinding ? b). Berapa lama jauh meluncur sebelum menggelinding ? Jawab : Kinematika dan dinamika selama meluncur :

a). Pada saat kondisi menggelinding tercapai : b). Pada saat kondisi menggelinding tercapai :