Developing Knowledge Management dalam perusahaan Week 10 – Pert 19 & 20 (Off Class Session)

Slides:



Advertisements
Presentasi serupa
WE-2010 Web Engineering Husni husni.trunojoyo.ac.id
Advertisements

An ERP for Travel Company
Data Mining dan Aplikasi untuk Knowledge Management
PEMOGRAMAN BERBASIS JARINGAN
Teknologi Informasi. Materi 1.History of Computer 2.History of Telecommunication + Mobile 3.Operating System + Software & Story of Sillicon Valley 4.Video:
SOCIAL MEDIA Widianto Nugroho, S.Sn. |
Aspek Sosial & Organisasi Restyandito, S.Kom, MSIS.
Research Methodology 2. Tahapan Penelitian
PERUBAHAN VS PERBAIKAN Center for Continuous Improvement, Today is better than yesterday, tomorrow is better than today
Perancangan Web dan Internet. Introduction ? •What is a web site ? •What Is Internet ?
INTERNET & E-COMMERCE Internet Marketing & eMarketing
Hadi Syahrial (Health IT Security Forum)
Company LOGO PRINSIP-PRINSIP TUTORIAL. Structured, Teacher Centered, identified task (Entwistle & Thomson, 1992) Unstructured, student centered, discussion/dial.
Materi Analisa Perancangan System.
Management Information Systems, 10/e
Administrasi Basis Data
IT SEBAGAI ALAT UNTUK MENCIPTAKAN KEUNGGULAN KOMPETISI
IT Project Management Based on PMBOK
Siklus Manajemen Pengetahuan
Rekayasa Perangkat Lunak/ AP/ 2005 Software Proses Page 1 Software Engineering Program Studi Teknik Informatika Fakultas Ilmu Komputer Universitas Dian.
1.1 VISUAL STUDIO 2008 / VISUAL BASIC.NET By Wan hendra M
Rully Yulian MF MCAD,MCPD,MCT,MVP VB.NET Independent IT Trainer – Application Developer
Tugas-Tugas.
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
PENGANTAR URBAN DESAIN
Review IS & Software System Concept Diah Priharsari PTIIK – Universitas Brawijaya Source: 1.Obrien & Marakas, Management Information.
Introduction to The Design & Analysis of Algorithms
MATERI 6 PERILAKU ORGANISASI
Artificial Intelligence
KNOWLEDGE MANAGEMENT: philosophy, processes, and pitfalls EXTRACTED FROM Soo, Devinney, Midgley, Deering (2002) CALIFORNIA MANAGEMENT REVIEW, 44 (4) 1seri.
IT , Jaringan,Internet,E-commerce
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
Hendro Subagyo, M.Eng. Kelompo k Judul dari E-Business Intelligence in the Digital Economy 1Reducing Risk in Information Search Activities 2Data Mining.
Pangkalan data/Basis data publikasi CIFOR. Sistem Pelacakan Penelitian (RTS) pentingnya pengembangan manajemen informasi penelitian (penelitian = core-business.
Ch. 7 TECHLOGY INTELLIGENCE. (T) Technical Intelligence Market Intelligence (M)
Understanding The nature of PBI Courses Nury S, MA Presented at UAD workshop August 10 –
Pengantar/pengenalan (Introduction)
How human charactersitics, practitioners’ habits and health care system regulations affet the research and development of medical devices.
PROGRAM AND MATERIALS DEVELOPMENT in ODL. How to design and develop the ODL programs and courses? Use systematic and systemic design know well the students.
Collabnet Overview v Informatika Introduction.
The Key Activity in Knowledge Organizations: Transferring Knowledge Karl Erik Sveiby All assets -tangible, intangible- are the result of human actions.
1 Certified Assessor Training Galeri 678 Kemang, 26 – 28 Agustus 2008 Materi Kuliah Program Magister Psikologi Unika Atmajaya Agustus 2009 Disusun oleh.
Manajemen Sistem Informasi
1 Magister Teknik Perencanaan Universitas Tarumanagara General View On Graduate Program Urban & Real Estate Development (February 2009) Dr.-Ing. Jo Santoso.
Thinking in terms of “Systems” What is a system? A system is a collection of interrelated components (subsystems) that function together to achieve some.
Visual Communication Design.03 Think creative, No boundaries Prepared by: Jacky Cahyadi, S.Sn.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
Organizing for Innovation Ch 13. Focus this chapter on: The methods by which firms organize for innovation.
Human Resource Management MSDM strategis M-2 1Tony Soebijono.
MODELS OF PR SYIFA SA. Grunig's Four models of Public Relations Model Name Type of Communica tion Model Characteristics Press agentry/ publicity model.
Metodologi Penelitian dalam Bidang Informatika
Pemrograman Sistem Basis Data Chapter II Database Sistem (Lanjutan)
Diagnose device problems that connected to the Wide Area Network Identify problems Through the Symptoms that arise HOME.
SMPN 2 DEMAK GRADE 7 SEMESTER 2
MANPRO-M13: MUTU PROYEK SISTEM
CRUD 3 STMIK AKAKOM 2014 Yii Framework
Introduction to Softcomputing Son Kuswadi Robotic and Automation Based on Biologically- inspired Technology (RABBIT) Electronic Engineering Polytechnic.
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
PENJUMLAHAN GAYA TUJUAN PEMBELAJARAN:
MARKETING MIX (BAURAN PEMASARAN).
Mengapa Strategi Gagal Diterapkan?
Silabus Erick Pranata © Sekolah Tinggi Teknik Surabaya 1.
Introduction to MANAGEMENT Prepared for MM UNSOED 2013
Slide 1 Chapter 1: Introduction to Systems Analysis and Design Alan Dennis, Barbara Wixom, and David Tegarden John Wiley & Sons, Inc.
Chapter 6 – International Opportunities
Splay Trees.
Exploring C-Chem with numeric MM and Ab-Initio methods Masood Malekghassemi – Systems Lab Abstract Computational chemistry is no new subject.
ODEP Technologies and Tools to Support Vehicle Access for People with Cognitive Disabilities Auto Alliance Workshop on Technologies for Providing Increased.
ForumPass Familiarization
Xuan Huo and Ming Li and Zhi-Hua Zhou
Transcript presentasi:

Developing Knowledge Management dalam perusahaan Week 10 – Pert 19 & 20 (Off Class Session)

Agenda  Peran AI dalam mengembangkan Knowledge Management (lihat artikel pendukung tentang AI)  Membuat suatu sistem Knowledge Management sederhana untuk organisasi

Tujuan  Mahasiswa mampu menciptakan suatu sistem Knowledge Management sederhana untuk organisasi

To Do  Pelajari dan pamahi artikel tentang Artificial Intelligence  Pelajari slide-slide pendukung berikut tentang Artificial Intelligence

Tugas off Class  Ambil perusahaan sebagai sample untuk pembangunan Knowledge Management  Lakukan analisa untuk kebutuhan knowledge management yang perlu dibangun diperusahaan  Bangun aplikasi untuk Knowledge Management yang diperlukan

Tugas off Class  Aplikasi yang dibangun harus berisi:  Secara umum tentang perusahaan atau aplikasi KM  Workflow  Document Management  Communication system ( , messages or forum)  Info center / contact centre (seperlunya)

 Effort to develop computer-based systems that behave as humans  Includes natural language, robotics, perceptive systems, expert systems, and intelligent machines ARTIFICIAL INTELLIGENCE What is Artificial Intelligence?

 Artificial Intelligence:  Stores information in active form  Creates mechanism not subjected to human feelings  Eliminates routine and unsatisfying jobs  Enhances organization’s knowledge base  Generates solution to specific problems Why Business is Interested in Artificial Intelligence ARTIFICIAL INTELLIGENCE

The Artificial Intelligence Family ARTIFICIAL INTELLIGENCE

 Knowledge Base  Rule-based Expert System  Rule Base  Knowledge Frames Capturing Knowledge: Expert Systems ARTIFICIAL INTELLIGENCE

Rules in an AI Program ARTIFICIAL INTELLIGENCE

 AI shell  Inference Engine  Forward Chaining  Backward Chaining Capturing Knowledge: Expert Systems ARTIFICIAL INTELLIGENCE

Knowledge engineer  Specialist eliciting information and expertise from other professionals  Translates information into set of rules for an expert system ARTIFICIAL INTELLIGENCE Building an Expert System

 Galeria Kaufhof  Countrywide Funding Corp. ARTIFICIAL INTELLIGENCE Examples of Successful Expert Systems

Case-based Reasoning (CBR)  Captures and stores collective knowledge  Represents knowledge as database of cases and solutions Organizational Intelligence: Case-Based Reasoning ARTIFICIAL INTELLIGENCE

Case database NOYES Successful? System modifies the solution to better fit the problem System finds closest fit and retrieves solution System stores problem and successful solution in the database System asks user additional questions to narrow the search System searches database for similar cases User describes the problem

 Hardware or software emulating processing patterns of biological brain  Put intelligence into hardware in form of a generalized capability to learn Neural Networks OTHER INTELLIGENT TECHNIQUES

Inference Engines in Expert Systems ARTIFICIAL INTELLIGENCE

Biological Neurons of a Leech OTHER INTELLIGENT TECHNIQUES

 Rule-based AI  Tolerates imprecision  Uses nonspecific terms called membership functions to solve problems Fuzzy Logic OTHER INTELLIGENT TECHNIQUES

Implementing Fuzzy Logic Rules in Hardware OTHER INTELLIGENT TECHNIQUES Figure 10-15

 Problem-solving methods  Promote evolution of solutions to specified problems  Use a model of living organisms adapting to their environment Genetic Algorithms OTHER INTELLIGENT TECHNIQUES

The Components of a Genetic Algorithm OTHER INTELLIGENT TECHNIQUES

 Integration of multiple AI technologies into a single application  Takes advantage of best features of technologies Hybrid AI Systems OTHER INTELLIGENT TECHNIQUES

 Software programs  Use built-in or learned knowledge base to carry out specific, repetitive, and predictable tasks Intelligent Agents OTHER INTELLIGENT TECHNIQUES