Distribusi Binomial.

Slides:



Advertisements
Presentasi serupa
TURUNAN/ DIFERENSIAL.
Advertisements

BAGIAN - 8 Teori Probabilitas.
Mesin Pembelajaran Achmad Basuki PENS – ITS 2006.
Pertemuan II SEBARAN PEUBAH ACAK
Pokok bahasan STATISTIKA matematika SMP
Statistika dan probabilitas
STATISTIKA DISTRIBUSI PROBABILITAS
DISTRIBUSI BINOMIAL.
Machine Learning Team PENS – ITS 2006
PROBABILITAS.
STATISTIK NONPARAMETRIK Kuliah 2: Uji Binomial dan Uji Runs (Satu Populasi) Dosen: Dr. Hamonangan Ritonga, MSc Sekolah Tinggi Ilmu Statistik.
Uji Mann Whitney Uji Mc Namer
UKURAN PEMUSATAN Rata-rata, Median, Modus Oleh: ENDANG LISTYANI.
Soal-Soal Latihan Mandiri
KONSEP DASAR PROBABILITAS
Korelasi dan Regresi Ganda
Bab 11A Nonparametrik: Data Frekuensi Bab 11A.
Distribusi Probabilitas 1
STRUKTUR DISKRIT PROBABILITAS DISKRIT PROGRAM STUDI TEKNIK KOMPUTER
DISTRIBUSI PROBABILITAS
THE RATIO ESTIMATOR VARIANCE DAN BIAS RATIO PENDUGA SAMPEL VARIANCE
Mari Kita Lihat Video Berikut ini.
BAB 10 DISTRIBUSI TEORITIS
BAB 13 PENGUJIAN HIPOTESA.
KONSEP DASAR PROBABILITAS
Bab 6B Distribusi Probabilitas Pensampelan
Distribusi Probabilitas ()
DALIL-DALIL PROBABILITAS (SSTS 2305 / 3 sks)
BAB V ukuran pemusatan Dipersiapkan oleh : Ely Kurniawati
SEBARAN DISKRIT Variabel Diskrit dan kontinue Variabel diskrit yang dimaksud adalah variabel yang diamati/diukur tidak dapat diwakili oleh seluruh titik.
DISTRIBUSI PROBABILITAS DISKRET
BAB XIII Distribusi Binomial
Pendugaan Parameter dan Besaran Sampel
LANJUTAN SOAL-SOAL LATIHAN DAN JAWABAN PELUANG.
KONSEP DASAR PROBABILITAS
Probabilitas & Distribusi Probabilitas
Pertemuan 18 Pendugaan Parameter
PERTEMUAN 5 Oleh Sri Winiarti, S.T, M.Cs
Peluang.
Kuliah ke 12 DISTRIBUSI SAMPLING
PELUANG SUATU KEJADIAN
UJI KOMPETENSI 1.
Modul 6 : Estimasi dan Uji Hipotesis
DISTRIBUSI NORMAL.
DISTRIBUSI PROBABLITAS
PENGUJIAN HIPOTESA Probo Hardini stapro.
DISTRIBUSI PROBABILITAS DISKRET
KONSEP DASAR PROBABILITAS
Probabilitas Bagian 2.
BAB XII PROBABILITAS (Aturan Dasar Probabilitas) (Pertemuan ke-27)
KONSEP DASAR PROBABILITAS
BAGIAN - 8 Teori Probabilitas.
PENGUJIAN PARAMETER DENGAN DATA SAMPEL
Statistika Deskriptif: Distribusi Proporsi
Dasar probabilitas.
DISTRIBUSI TEORETIS Tujuan :
PROBABILITAS (PELUANG)
DISTRIBUSI PELUANG Pertemuan ke 5.
DISTRIBUSI PROBABLITAS (SSTS 2305 / 3 sks)
Distribusi Binomial. 2 Pendahuluan Diantara sekian banyak distribusi barangkali distribusi normal merupakan distribusi yang secara luas banyak digunakan.
Bab 5 Distribusi Sampling
DISTRIBUSI PROBABILITAS diskrit
DISTRIBUSI PROBABILITAS
Kuliah Biostatistika Deskriptif
PROBABILITAS dan DISTRIBUSI
Bab 5 Distribusi Sampling
PENGERTIAN DISTRIBUSI TEORITIS
. Distribusi Binomial adalah suatu distribusi probabilitas yang dapat digunakan bilamana suatu proses sampling dapat diasumsikan sesuai dengan proses.
Distribusi Sampling Menik Dwi Kurniatie, S.Si., M.Biotech.
DISTRIBUSI BINOMIAL Suatu percobaan binomial yang diulang sebanyak n kali dengan P(sukses) = P(S) = p dan P(gagal) = P(G) = 1 – p = q adalah tetap pada.
Transcript presentasi:

Distribusi Binomial

Pendahuluan Diantara sekian banyak distribusi barangkali distribusi normal merupakan distribusi yang secara luas banyak digunakan dalam berbagai penelitian. Banyak kejadian yang dapat dinyatakan dalam data hasil observasi per eksperimen yang mengikuti distribusi normal. Misalkan : tinggi badan, berat badan, isi sebuah botol, nilai hasil ujian dan lain-lain.

Definisi Distribusi Binomial adalah suatu distribusi probabilitas yang dapat digunakan bilamana suatu proses sampling dapat diasumsikan sesuai dengan proses Bernoulli. Misalnya, dalam perlemparan sekeping uang logam sebanyak 5 kali, hasil setiap ulangan mungkin muncul sisi gambar atau sisi angka. Begitu pula, bila kartu diambil berturut-turut, kita dapat memberi label "berhasil" bila kartu yang terambil adalah kartu merah atau ”gagal” bila yang terambil adalah kartu hitam. Ulangan-ulangan tersebut bersifat bebas dan peluang keberhasilan setiap ulangan tetap sama, yaitu sebesar 0,5..(Ronald E. Walpole)

Ciri-Ciri Distribusi Binomial Percobaan diulang sebanyak n kali. Hasil setiap ulangan dapat dikategorikan ke dalam 2 kelas, misal : "BERHASIL" atau "GAGAL"; "YA" atau "TIDAK"; "SUCCESS" atau "FAILED"; Peluang berhasil / sukses dinyatakan dengan p dan dalam setiap ulangan nilai p tetap. peluang gagal dinyatakan dengan q, dimana q = 1 - p. Setiap ulangan bersifat bebas (independent) satu dengan yang lainnya. Percobaannya terdiri dari atas n ulangan (Ronald E. Walpole). Nilai n < 20 dan p > 0.05

Rumus Distribusi Binomial b(x;n,p) = ncxpxqn-x dimana : x = 0,1,2,3,.....,n n = banyaknya ulangan x = banyaknya kerberhasilan dalam peubah acak x p = Peluang berhasil dalam setiap ulangan q = Peluang gagal, dimana q = 1 - p dalam setiap ulangan

Catatan : Agar anda mudah dalam membedakan p dengan q, anda harus dapat menetapkan mana kejadian SUKSES dan mana kejadian GAGAL. Anda dapat menetapkan bahwa kejadian yang menjadi pertanyaan atau ditanyakan adalah = kejadian SUKSES.

Contoh distribusi binomial : Berdasarkan data biro perjalanan PT Mandala Wisata air, yang khusus menangani perjalanan wisata turis manca negara, 20% dari turis menyatakan sangat puas berkunjung ke Indonesia, 40% menyatakan puas, 25% menyatakan biasa saja dan sisanya menyatakan kurang puas. Apabila kita bertemu dengan 5 orang dari peserta wisata turis manca negara yang pernah berkunjung ke Indonesia, berapakah probabilitas : Paling banyak 2 diantaranya menyatakan sangat puas Paling sedikit 1 di antara menyatakan kurang puas Tepat 2 diantaranya menyatakan biasa saja

Jawab : X ≤ 2 Lihat tabel dan lakukan penjumlahan sebagai berikut : b(x; n, p) = b(0; 5, 0.20) + b(1; 5, 0.20) + b(2; 5, 0.20) = 0.32768 + 0.40960 + 0.20480 = 0.94208 atau b(x=0) = 5C0 (0.20)0 (0.80)5 = 0.32768 b(x=1) = 5C1 (0.20)0 (0.80)4 = 0.40960 b(x=2) = 5C2 (0.20)0 (0.80)3 = 0.20480 ---------------------------------------------------- + Maka hasil x = 2 adalah = 0.94208

X ≥ 1 Lihat tabel dan lakukan penjumlahan sebagai berikut : b(1; 5, 0.15) + b(2; 5, 0.15) + b(3; 5, 0.15) + b(4; 5, 0.15) + b(5; 5, 0.15) = 0.3915 + 0.1382 + 0.0244 + 0.002 + 0.0001 = 0.5562 X = 2 b(2; 5, 0.25) = 0.2637

X = 2 X = 4 Lihat tabel dan lakukan penjumlahan sebagai berikut : b(2; 5, 0.40) + b(3; 5, 0.40) + b(4; 5, 0.40) = 0.3456 + 0.2304 + 0.0768 = 0.6528

Analisis masing-masing point : Sebanyak paling banyak 2 dari 5 orang dengan jumlah 0.94208 atau 94,28% yang menyatakan sangat puas adalah sangat besar. Paling sedikit 1 dari 5 orang (berarti semuanya) dengan jumlah 0,5563 atau 55,63% yang menyatakan kurang puas dapat dikatakan cukup besar (karena lebih dari 50%). Tepat 2 dari 5 orang yang menyatakan biasa saja dengan jumlah 0,2637 atau 26,37% adalah kecil (karena dibawah 50%). Ada 2 sampai 4 yang menyatakan puas dengan jumlah 0,6528% atau 65,28% dapat dikatakan cukup besar.

Analisis keseluruhan : Presentase Jika diambil persentase terbesar tanpa memperhatikan jumlah X, maka persentase terbesar ada di point pertama (a) yaitu 94,28% yang menyatakan sangat puas. Hal tersebut menandakan banyak turis manca negara yang sangat menyukai Indonesia.

Nilai X Jika dilihat dari jumlah X, maka perlu diperhatikan point kedua (b). Jumlah X adalah paling sedikit 1 dari 5 orang (berarti X>=1) yaitu 55,63% yang menyatakan kurang puas. Hal tersebut berarti kelima (semua) turis manca negara kurang puas terhadap kunjungannya ke Indonesia.

Kepala bagian produksi PT SAMSUNG melaporkan bahwa rata - rata produksi televisi yang rusak setiap kali produksi adalah sebesar 15 %. Jika dari total produksi tersebut diambil secara acak sebanyak 4 buah televisi, berapakah perhitungan dengan nilai probabilitas 2 ?

Jawab : p ( rusak ) = 0,15, q ( baik ) = 0,85, x = 2, n = 4 Rumus : b ( x ; n ; p )           = nCx px q n-x b (x = 2 ; 4 ; 0,12 ) = 4C2 (0,15)2 (0,85)(4 - 2)                                = 0,0975

Analisis : Dengan jumlah 0,0975 atau 9,75% dari sampel acak sebanyak 4 buah televisi dan rata - rata produk rusak setiap kali produksi adalah sebesar 15%, dapat dikatakan kecil. Namun pada kenyataannya, meskipun dilihat secara persentase kecil (hanya 9,75%) yang namanya produk rusak harus tetap dikurangi atau bahkan dihilangkan untuk mengurangi kerugian.

Rata-Rata dan Ragam Distribusi Binomial            Rata-rata µ = n . p           Ragam ð2 = n . p . q n : ukuran populasi p : peluang berhasil dalam setiap ulangan q : peluang gagal, dimana q = 1 - p dalam setiap ulangan

Contoh Rata - rata dan Ragam Distribusi Binomial : Untuk b (5; 5, 20) dimana x = 5, n = 5 dan p = 0.20 q = 1-p ; q = 1-0.20 = sehingga q = 0.80 maka :           µ = 5 X 0.20 = 1           ð2 = 5 X 0.20 X 0.8 = 0.80           ð = √0.80 = 0.8944

Metode Bayes

Mengapa Metode Bayes Metode Bayes ini merupakan metode yang baik di dalam mesin pembelajaran berdasarkan data training, dengan menggunakan probabilitas bersyarat sebagai dasarnya.

Probabilitas Bersyarat X Y XY S Probabilitas X di dalam Y adalah probabilitas interseksi X dan Y dari probabilitas Y, atau dengan bahasa lain P(X|Y) adalah prosentase banyaknya X di dalam Y

Probabilitas Bersyarat Dalam Data # Cuaca Temperatur Kecepatan Angin Berolah-raga 1 Cerah Normal Pelan Ya 2 3 Hujan Tinggi Tidak 4 Kencang 5 6 Banyaknya data berolah-raga=ya adalah 4 dari 6 data maka dituliskan P(Olahraga=Ya) = 4/6 Banyaknya data cuaca=cerah dan berolah-raga=ya adalah 4 dari 6 data maka dituliskan P(cuaca=cerah dan Olahraga=Ya) = 4/6

Distribusi Bersama dan Distribusi Marginal Dari 100 orang mahasiswa menunjukkan 20 orang mahasiswa menyukai keduanya, 30 orang mahasiswa menyukai bulu tangkis tapi tidak menyukai bola volley, 40 orang mahasiswa menyukai bola volley tapi tidak menyukai bulu tangkis, dan 10 orang mahasiswa tidak menyukai kuduanya. Dari data ini dapat disusun bentuk distribusi bersama sebagai berikut: Suka bulu tangkis (X) Suka bola volley (Y) P(X) Ya Tidak 0.2 0.3 0.5 0.4 0.1 P(Y) 0.6 1 Distribusi Bersama Distribusi Marginal X dan Y

Probabilitas Bersyarat Dalam Data # Cuaca Temperatur Berolahraga 1 cerah normal ya 2 tinggi 3 hujan tidak 4 5 6 Banyaknya data berolah-raga=ya adalah 3 dari 6 data maka dituliskan P(Olahraga=Ya) = 3/6 Banyaknya data cuaca=cerah, temperatur=normal dan berolah-raga=ya adalah 4 dari 6 data maka dituliskan P(cuaca=cerah, temperatur=normal, Olahraga=Ya) = 2/6

Metode Bayes Xn X2 …. X1 Y Keadaan Posteriror (Probabilitas Xk di dalam Y) dapat dihitung dari keadaan prior (Probabilitas Y di dalam Xk dibagi dengan jumlah dari semua probabilitas Y di dalam semua Xi)

HMAP P( Y | X ) P(X) argmax P( S | X ) = xX P(X ) HMAP (Hypothesis Maximum Appropri Probability) menyatakan hipotesa yang diambil berdasarkan nilai probabilitas berdasarkan kondisi prior yang diketahui. P( S | X ) = argmax xX P( Y | X ) P(X) P(X ) HMAP adalah model penyederhanaan dari metode bayes yang disebut dengan Naive Bayes. HMAP inilah yang digunakan di dalam macine learning sebagai metode untuk mendapatkan hipotesis untuk suatu keputusan.

Contoh HMAP Diketahui hasil survey yang dilakukan sebuah lembaga kesehatan menyatakan bahwa 30% penduduk di dunia menderita sakit paru-paru. Dari 90% penduduk yang sakit paru-paru ini 60% adalah perokok, dan dari penduduk yang tidak menderita sakit paru-paru 20% perokok. Fakta ini bisa didefinisikan dengan: X=sakit paru-paru dan Y=perokok. Maka : P(X) = 0.9 P(~X) = 0.1 P(Y|X) = 0.6  P(~Y|X) = 0.4 P(Y|~X) = 0.2  P(~Y|~X) = 0.8 Dengan metode bayes dapat dihitung: P({Y}|X) = P(Y|X).P(X) = (0.6) . (0.9) = 0.54 P({Y}|~X) = P(Y|~X) P(~X) = (0.2).(0.1) = 0.02 Bila diketahui seseorang merokok, maka dia menderita sakit paru-paru karana P({Y}|X) lebih besar dari P({Y}|~X). HMAP diartikan mencari probabilitas terbesar dari semua instance pada attribut target atau semua kemungkinan keputusan. Pada persoalan keputusan adalah sakit paru-paru atau tidak.

HMAP Dari Data Training # Cuaca Temperatur Kecepatan Angin Berolah-raga 1 Cerah Normal Pelan Ya 2 3 Hujan Tinggi Tidak 4 Kencang 5 6 Asumsi: Y = berolahraga, X1 = cuaca, X2 = temperatur, X3 = kecepatan angin. Fakta menunjukkan: P(Y=ya) = 4/6  P(Y=tidak) = 2/6

HMAP Dari Data Training # Cuaca Temperatur Kecepatan Angin Berolah-raga 1 Cerah Normal Pelan Ya 2 3 Hujan Tinggi Tidak 4 Kencang 5 6 Apakah bila cuaca cerah dan kecepatan angin kencang, orang akan berolahraga? Fakta: P(X1=cerah|Y=ya) = 1, P(X1=cerah|Y=tidak) = 0 P(X3=kencang|Y=ya) = 1/4 , P(X3=kencang|Y=tidak) = 1/2 HMAP dari keadaan ini dapat dihitung dengan: P( X1=cerah,X3=kencang | Y=ya ) = { P(X1=cerah|Y=ya).P(X3=kencang|Y=ya) } . P(Y=ya) = { (1) . (1/4) } . (4/6) = 1/6 P( X1=cerah,X3=kencang | Y=tidak ) = { P(X1=cerah|Y=tidak).P(X3=kencang|Y=tidak) } . P(Y=tidak) = { (0) . (1/2) } . (2/6) = 0 KEPUTUSAN ADALAH BEROLAHRAGA = YA

Kelemahan Metode Bayes Metode Bayes hanya bisa digunakan untuk persoalan klasifikasi dengan supervised learning dan data-data kategorikal. Metode Bayes memerlukan pengetahuan awal untuk dapat mengambil suatu keputusan. Tingkat keberhasilan metode ini sangat tergantung pada pengetahuan awal yang diberikan.

Beberapa Aplikasi Metode Bayes Menentukan diagnosa suatu penyakit berdasarkan data-data gejala (sebagai contoh hipertensi atau sakit jantung). Mengenali buah berdasarkan fitur-fitur buah seperti warna, bentuk, rasa dan lain-lain Mengenali warna berdasarkan fitur indeks warna RGB Mendeteksi warna kulit (skin detection) berdarkan fitur warna chrominant Menentukan keputusan aksi (olahraga, art, psikologi) berdasarkan keadaan. Menentukan jenis pakaian yang cocok untuk keadaan-keadaan tertentu (seperti cuaca, musim, temperatur, acara, waktu, tempat dan lain-lain)

TABEL BINOMIAL

Binomial Table C

Table C