SISTEM WAKTU DISKRIT Deskripsi Input-Output Representasi Diagram Blok

Slides:



Advertisements
Presentasi serupa
Sistem Kontrol – 8 Review, Transfer Fungsi, Diagram Blok, Dasar SisKon
Advertisements

SISTEM PEMROSESAN SINYAL Fatkur Rohman, MT
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Analisis Rangkaian Listrik di Kawasan s” 2.
Analisis Rangkaian Listrik Oleh : Sudaryatno Sudirham
Diagram blok sistem instrumentasi
Kontroler PID Pengendalian Sistem. Pendahuluan Urutan cerita : 1. Pemodelan sistem 2. Analisa sistem 3. Pengendalian sistem Contoh : motor DC 1. Pemodelan.
TRANSFORMASI-Z Transformsi-Z Langsung Sifat-sifat Transformasi-Z
ANALISIS TANGGAP TRANSIEN
OPERASI SINYAL WAKTU DISKRIT dan KONVOLUSI SINYAL
Tri Rahajoeningroem, MT Teknik Elektro - UNIKOM
PERSAMAAN BEDA Sistem Rekursif dan Nonrekursif
Sistem Waktu - Diskret Discrete system 1. Persamaan beda Linier
MODEL MATEMATIK SISTEM FISIK
ANALISIS SISTEM LTI Metoda analisis sistem linier
Dimas Firmanda Al Riza, ST, M.Sc
BADAN PENELITIAN DAN PENGEMBANGAN PERTANIAN KEMENTERIAN PERTANIAN
ANALIS FOURIER SINYAL WAKTU DISKRIT TEAM DOSEN
Definisi Sistem Sistem adalah sekumpulan elemen-elemen yang berinteraksi dengan maksud yang sama untuk mencapai suatu tujuan tertentu.
Fakultas Teknik Elektro Tel-U
TRANSMISI DAN PENYARINGAN SINYAL
SINYAL DAN SISTEM WAKTU DISKRIT
Pengantar Teknik Pengaturan* AK Lecture 4: Fungsi Transfer
Analisis Rangkaian Listrik Analisis Menggunakan Transformasi Laplace
Transformasi Laplace dan Diagram Blok Transformasi Laplace:Mentransformasi fungsi dari sistem fisis ke fungsi variabel kompleks S. Bentuk Integral :
Pemodelan Dalam Riset Operasi
SHIFT REGISTER Satriyo, MKom.
PERTEMUAN 07 FLIP FLOP Teknik digital.
“HALF ADDER DAN FULL ADDER”
1 Pendahuluan Pertemuan 11 Matakuliah: H0062/Teori Sistem Tahun: 2006.
System System waktu-kontinyu, Mentransformasi isyarat waktu-kontinyu input menjadi isyarat waktu kontinyu output System waktu-diskret, Mentransformasi.
Representasi Sistem (Permodelan Sistem) Budi Setiyono, ST. MT.
Matakuliah : H0134 / Sistem Pengaturan Dasar
Pemodelan Simulasi Sistem Diskrit
Sinyal dan Sistem Waktu Diskrit
TEORI SINYAL DAN SISTEM
(Fundamental of Control System)
Jurusan Elektro STT Telkom
PERTEMUAN 11 REGISTER
TENTANG SISTEM INFORMASI
Disusun oleh : Tri Rahajoeningroem, MT
Sistem Kendali Gabriel Sianturi.
PENGANTAR TEKNOLOGI KOMPUTER & INFORMASI – A
SUB Pengolahan Sinyal Digital
Komponen Penyusun Sistem LTI
Kesalahan Tunak (Steady state error)
KONSEP FASOR DAN PENERAPANNYA
Dr. Ir. Yeffry Handoko Putra, M.T
Rangkaian logika Kombinasional
Reduksi Beberapa Subsistem
PENGOLAHAN SINYAL DIGITAL
Representasi sistem, model, dan transformasi Laplace Pertemuan 2
KONSEP DASAR PENGEMBANGAN SISTEM
Karakteristik Sistem Pengaturan Pertemuan 6
Sinyal dan Sistem Linier
PENGOLAHAN SINYAL DIGITAL
3 sks Oleh: Ira Puspasari
KONVOLUSI Tri Rahajoeningroem, MT T. Elektro - UNIKOM
Persamaan Beda & Respon Impuls
SISTEM PENGATURAN (CONTROL SYSTEM)
FUNGSI KORELASI DAN APLIKASINYA
Struktur Jaringan Syaraf Tiruan
Pengantar tentang sistem
KULIAH SISTEM KENDALI DISKRIT MINGGU 7
Fungsi-fungsi IC Digital: Kombinasi
Analisa Sinyal dan Sistem
SISTEM KOMUNIKASI ANALOG Kuliah 1
REGISTER PERTEMUAN 11 uart/reg8.html.
Tanggapan Frekuensi 2017.
RANGKAIAN SEKUENSIAL.
Pendahuluan Pertemuan 1
Transcript presentasi:

SISTEM WAKTU DISKRIT Deskripsi Input-Output Representasi Diagram Blok Klasifikasi Sistem Hubungan Antar Sistem

DESKRIPSI INPUT-OUTPUT Ekspresi matematik : Hubungan antara input dan output x(n) = input (masukan, eksitasi) y(n) = output (keluaran, respon)  = Transformasi (operator) Sistem dipandang sebagai black box

Contoh Soal 4.1 Tentukan respon dari sistem-sistem berikut terhadap input :

Jawab : Sistem identitas

y(n-1)  initial condition (kondisi awal) Akumulator y(n) tidak hanya tergantung pada input x(n) tapi juga pada respon sistem sebelumnya y(n-1)  initial condition (kondisi awal) y(n-1) = 0  sistem relaks

Tentukan respon dari akumulator dengan input x(n) = n u(n) bila : Contoh Soal 5.2 Tentukan respon dari akumulator dengan input x(n) = n u(n) bila : y(- 1) = 0 (sistem relaks) y(- 1) = 1 Jawab :

REPRESENTASI DIAGRAM BLOK Penjumlah (adder) Pengali dengan konstanta (constant muliplier) Pengali sinyal (signal multiplier) Elemen tunda (unit delay element)

Adder : Constant multiplier : x1(n) x2(n) y(n) = x1(n) + x2(n) x(n) y(n) = a x(n)

Signal multiplier : Unit delay element : x1(n) x2(n) y(n) = x1(n)x2(n) z - 1 x(n) y(n) = x(n –1) z x(n) y(n) = x(n +1)

Buat diagram blok dari sistem waktu diskrit dimana : Contoh Soal 5.3 Buat diagram blok dari sistem waktu diskrit dimana : Jawab : black box + 0,25 x(n) 0,5 z - 1 y(n)

black box + 0,25 x(n) 0,5 z - 1 y(n)

KLASIFIKASI SISTEM Sistem statik dan dinamik Time-invariant & time-variant system Sistem linier dan sistem nonlinier Sistem kausal dan sistem nonkausal Sistem stabil dan sistim tak stabil

Sistem Statik (memoryless) : Output pada setiap saat hanya tergantung input pada saat yang sama Tidak tergantung input pada saat yang lalu atau saat yang akan datang

Sistem Dinamik : Outputnya selain tergantung pada input saat yang sama juga tergantung input pada saat yang lalu atau saat yang akan datang Memori terbatas Memori terbatas Memori tak terbatas

Sistem Time-Invariant (shift-invariant) : Hubungan antara input dan output tidak tergantung pada waktu Umumnya : Time-invariant Time-variant

Contoh Soal 5.4 Tentukan apakah sistem-sistem di bawah ini time-invariant atau time-variant + x(n) y(n) = x(n) - x(n-1) z - 1 - Differentiator a) Jawab : Time-invariant

b) x n x(n) y(n) = n x(n) Time multiplier Jawab : Time-variant

c) T y(n) = x(-n) x(n) Folder Jawab : Time-variant

d) x cos(on) x(n) y(n) = x(n)cos(on) Modulator Jawab : Time-variant

Prinsip superposisi berlaku Sistem Linier : Prinsip superposisi berlaku + x1(n) x2(n) y1(n) a1 a2 T

+ x1(n) x2(n) y2(n) a1 a2 T Linier

Contoh Soal 5.5 Tentukan apakah sistem-sistem di bawah ini linier atau nonlinier

Sistem Kausal : Outputnya hanya tergantung pada input sekarang dan input yang lalu x(n), x(n-1), x(n-2), ….. Outputnya tidak tergantung pada input yang lalu x(n+1), x(n+2), …..

Contoh Soal 5.6 Tentukan kausalitas dari sistem-sistem di bawah ini : a, b dan c kausal d, e dan f nonkausal g kausal

Sistem Stabil : Setiap input yang terbatas (bounded input) akan menghasilkan output yang terbatas (bounded output)  BIBO

Contoh Soal 5.7 Tentukan kestabilan dari sistem di bawah ini bila mendapat input x(n) = C (n), 1 < C <  Jawab : Tidak stabil

HUBUNGAN ANTAR SISTEM Sistem-sistem kecil dapat digabungkan menjadi sistem yang lebih besar Hubungan seri dan paralel T1 x(n) y(n) T2 y1(n)

Umumnya : Sistem linier dan time-invariant :

Hubungan paralel : + x1(n) y(n) y1(n) T2 T1 y2(n)