Thermos = Panas Dynamic = Perubahan

Slides:



Advertisements
Presentasi serupa
Usaha pada Proses Termodinamika
Advertisements

Siklus Carnot.
Kecepatan efektif gas ideal
1. Energi tidak dapat diciptakan atau dimusnahkan Energi hanya dapat diubah dari satu bentuk ke bentuk lainnya E K = ½mu 2 E P = 0 E K = 0 E P = mgh E.
SUHU, PANAS, DAN ENERGI INTERNAL
4.5 Kapasitas Panas dan Kapasitas Panas Jenis
T E R M O D I N A M I K A d c.
BAB V PROSES TERMODINAMIKA GAS SEMPURNA
HUKUM KEDUA TERMODINAMIKA
TEORI KINETIK GAS  TEKANAN GAS V Ek = ½ mv2 mv2 = 2 Ek Gas Ideal
TERMODINAMIKA METODE PEMBELAJARAN : TATAP MUKA 4 X 2 X 50’
TERMODINAMIKA METODE PEMBELAJARAN : TATAP MUKA 4 X 2 X 50’
K A L O R Sabar Coyy....
HUKUM PERTAMA (KONSEP)
3. Radiasi Radiasi tidak memerlukan kontak fisik
Bab 9 termodinamika.
Siklus Udara Termodinamika bagian-1
Bersama Media Inovasi Mandiri Semoga Sukses !! Selamat Belajar…
Hukum Termodinamika dan Boyle
SIKLUS CARNOT Proses a b : ekspansi isotermal pada suhu T2,
HUKUM KEDUA TERMODINAMIKA
v ENTROPI Q1= panas keluaran diberi tanda negatif(-)
TERMODINAMIKA PROSES-PROSES TERMODINAMIKA Proses Isobarik (1)
FI-1101: Kuliah 14 TERMODINAMIKA
HUKUM KEDUA TERMODINAMIKA
Berkelas.
1. KONSEP TEMPERATUR Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama. Kalor.
Vapor Compression Cycle
Pertemuan Temperatur, Kalor, Perpindahan Kalor dan Termodinamika
Kelompok 6 Kimia Fisik 1 (Kelompok 6) Ersa Melani Priscilia Harry Crhisnadi Inzana Priskila Kinanthi Eka Merdiana Lidya Idesma.
Mitha Puspitasari, S.T., M.Eng Ir. Tunjung Wahyu Widayati, M.T
MENERAPKAN HUKUM TERMODINAMIKA
TERMODINAMIKA Bagian dari ilmu fisika yang mempelajari energi panas, temperatur, dan hukum-hukum tentang perubahan energi panas menjadi energi mekanik,
FI-1101: Kuliah 14 TERMODINAMIKA
Hukum Termodinamika 2.
Pemerintah Kabupaten Buleleng
Dr. Nugroho Susanto.
ENTROPI PERTEMUAN 13.
TERMODINAMIKA YANASARI,S.Si.
Pertemuan 14 SISTEM TENAGA GAS.
TERMODINAMIKA Departemen Fisika
TERMODINAMIKA dan Hukum Pertama
APLIKASI HUKUM I TERMODINAMIKA DAN KAPASITAS KALOR
TERMOFISIKA Di susun oleh: Rosalina pangala Salimah Suprihatiningsih
FISIKA DASAR II GAS IDEAL DAN TERMODINAMIKA
FISIKA DASAR II HUKUM KEDUA TERMODINAMIKA
Help TERMODINAMIKA Thermos = panas Dynamic= perubahan Perubahan energi panas.
Kelas XII IPA SMA Muhammadiyah 7
Presented by : Luailik Madaniyah ( )
55.
Standar Kompetensi Menerapkan konsep termodinamika dalam mesin kalor
Hukum Pertama Termodinamika
Hukum II Termoinamika Mar’ie zidan ma’ruf ( )
Mesin panas dan Refrigerator
Kerja Pemampatan dan Pemuaian
Thermos = Panas Dynamic = Perubahan
Fak. Sains dan Tekonologi, UNAIR
T E R M O D I N A M I K A d c.
Hukum ke-nol dan I Termodinamika
Dapat menganalisis dan menerapkan hukum termodinamika.
Termodinamika Nurhidayah, S.Pd, M.Sc.
Hukum-Hukum Termodinamika
HUBUNGAN HUKUM 1 TERMODINAMIKADENGAN HUKUM 2 TERMODINAMIKA
Dr. Nugroho Susanto.
Siklus carnot.
Oleh La Tahang TERMODINAMIKA MATERI HUKUM KE-0 HUKUM KE-1 HUKUM KE-2
TERMODINAMIKA PROSES-PROSES TERMODINAMIKA Proses Isobarik (1)
Thermos = Panas Dynamic = Perubahan
TERMOKIMIA. PENGERTIAN Termokimia adalah cabang dari ilmu kimia yang mempelajari hubungan antara reaksi dengan panas. HAL-HAL YANG DIPELAJARI Perubahan.
Kecepatan efektif gas ideal Dalam wadah tertutup terdapat N molekul gas bergerak ke segala arah (acak) dengan kecepatan yang berbeda Misalkan : N 1 molekul.
Transcript presentasi:

Thermos = Panas Dynamic = Perubahan TERMODINAMIKA Thermos = Panas Dynamic = Perubahan

Termodinamika Cabang ilmu fisika yang mempelajari: 1. Pertukaran energi dalam bentuk: - Kalor - Kerja 2. Sistem ----------------Pembatas (boundary) 3. Lingkungan

TIGA MACAM SISTEM 3. SISTEM TERISOLASI : 1. SISTEM TERBUKA: Ada pertukaran massa dan energi sistem dengan lingkungannya. Misal : lautan, tumbuh-tumbuhan 2. SISTEM TERTUTUP Ada pertukaran energi tetapi TIDAK terjadi pertukaran massa sistem dengan lingkungannya. Misalnya: Green House ada pertukaran kalor tetapi tidak terjadi pertukaran kerja dengan lingkungan. 3. SISTEM TERISOLASI : TIDAK ada pertukaran massa dan energi sistem dengan lingkungan. Misalnya: Tabung gas yang terisolasi.

SIFAT PEMBATAS Pembatas adiabatik: tidak ada pertukaran kalor antara sistem dan lingkungan Pembatas tegar: tidak ada kerja baik dari sistem terhadap lingkungan ataupun dari lingkungan terhadap sistem

Hukum Ke I Pernyataan tentang kekekalan energi dalam sistem: ∆U = Q – W Perubahan energi dalam (∆U) sistem = kalor (Q) yang ditambahkan ke sistem dikurangi dengan kerja yang dilakukan oleh sistem. Pada sistem terisolasi Q = 0 dan W = 0 tidak ada perubahan energi dalam.

Contoh soal: Kalor sebanyak 1000 J ditambahkan ke sistem sementara kerja dilakukan pada (terhadap) sistem sebesar 500 J. Berapa perubahan energi dalam sistem? Jawab = ∆U = Q – W = ( + 1000 K ) – (-500 J) = 1500 J. Perhatikan bahwa HK 1 dalam bentuk ∆U = Q – W Q positip : KALOR DITAMBAHKAN KE SISTEM Q negatip: KALOR DILEPASKAN OLEH SISTEM W positip KERJA DILAKUKAN OLEH SISTEM W negatip KERJA DILAKUKAN PADA SISTEM

DIAGRAM P-V P V P1 P2 V1 V2 Kerja yang dilakukan gas untuk proses dari (P1, V1) ke (P2, V2) adalah Luas bagian kurva yang diarsir P (105 N/m2) V (m3) 1 5 2 4 Contoh: hitunglah kerja yang dilakukan gas jika mengalami proses seperti pada gambar di samping ini!

PERSAMAAN GAS IDEAL PV = nRT U=(3/2) nRT Contoh: suatu gas ideal mula-mula suhunya 500K, tekanannya 2x105Pa dan volumenya 0,4m3. Tentukan energi dalam gas ideal tersebut Jika kemudian gas didinginkan pada volume tetap sehingga suhunya menjadi 200K, tentukan tekanan akhir, energi dalam, kerja serta kalor yang dilepaskan gas

Diagram PV untuk 4 proses dasar Proses Isokhorik ∆ U = Q, W = 0 Proses Isobarik W = P(V2V1) V2 V1 V2 P Proses Isotermal W = Q = nRT ln (V2/V1) Proses Adiabatik W = - ∆ U V1 V

Diagram PV untuk rangkaian proses yang berbeda Suatu gas ideal mula-mula suhunya 400K, tekanan 2x104 Pa dan volumenya 0.001 m3. Gas dikompresi secara perlahan pada tekanan konstan ditekan sehingga volumenya menjadi separuh semula. Kemudian kalor ditambahkan ke gas sementara volume diatur tetap konstan sehingga suhu dan tekanan naik sampai suhu sama dengan suhu mula-mula. Sistem kemudian diekspansi pada suhu tetap sehingga volumenya sama dengan mula-mula Gambarkan proses-proses tersebut dalam suatu diagram P-V Tentukan tekanan, suhu dan volume di akhir tiap proses Tentukan kerja, kalor dan perubahan energi dalam pada tiap proses

Proses alamiah cenderung menuju ketidakteraturan (entropi maximum)! ENTROPI : DERAJAT KETIDAKATURAN Hukum Ke II HK I kekekalan energi HK II menyatakan arah reaksi sistem. HK II dapat dinyatakan dalam berbagai bentuk. Kalor mengalir secara alami dari benda panas ke benda dingin; kalor tidak mengalir secara spontan dari benda dingin ke panas Banyak proses yang irreversible: 1) Campurkan kopi dan gula lalu kocok, keduanya menyatu akan tetapi seberapapun anda kocok kembali keduanya tidak memisah lagi. 2) Pecahan gelas tidak kembali ke bentuk utuhnya. Proses alamiah cenderung menuju ketidakteraturan (entropi maximum)!

Mesin Pemanas HK II : Pada suatu mesin siklik tidak mungkin kalor yang diterima mesin diubah semuanya menjadi kerja. Selalu ada kalor yang dibuang oleh mesin. Qi Qo W Reservoar panas Reservoar dingin Efisiensi: Sebuah mesin mobil memiliki efisiensi 20 persen dan menghasilkan kerja rata-rata 20.000 J tiap detik. Tentukan berapa besar kalor yang dibuang dari mesin ini tiap detik Jawab: 80.000 J

Mesin Carnot (Ideal) Menurut Carnot siklus mesin pemanas harus reversibel(dapat balik) dan tidak terjadi perubahan entropi. Ini adalah idealisasi karena kenyataannya kalor tidak seluruhnya diubah menjadi kerja (ada yang hilang dalam bentuk gesekan/turbulensi) Efisiensi (n) mesin bergantung pada selisih suhu kedua reservoir : Contoh: Sebuah mesin Carnot bekerja pada suhu 27oC dan 327oC. Tentukan efisiensi mesin tersebut!

Q1=kalor masuk tandon (resevoir) Q2=kalor keluar tandon MESIN PENDINGIN Merupakan kebalikan dari mesin pemanas. Q1=kalor masuk tandon (resevoir) Q2=kalor keluar tandon W= kerja yang ditambahkan ke sistem Q2=Q1+W Coefficient of Performance ukuran kerja sistem didefinisikan sebagai (COP)= Q1/W X 100% Q2 Q1 W Reservoar panas Reservoar dingin Sebuah mesin pendingin bekerja dengan daya sebesar 200W. Jika kalor yang dibuang direservoar panas tiap sekonnya adalah 250 J, tentukan koefisien performansi dari mesin tersebut!

Santai dulu ahhhh… Asik euyyy…. Abis kul termo istirahat dulu ahhh…. aku juga sistem lho..

Penutup Banyak sekali terapan hukum-hukum termodinamika dalam berbagai bidang seperti ilmu lingkungan, otomotif, ilmu pangan, ilmu kimia dll. Untuk dapat diaplikasikan dalam berbagai bidang tersebut perlu pendalaman lebih lanjut. Pada pertemuan selanjutnya akan disampaikan materi tentang listrik statik