Sistem Bilangan dan Konversi Bilangan

Slides:



Advertisements
Presentasi serupa
Dasar dari Komputer, Sistem Bilangan, dan Gerbang logika
Advertisements

Dasar dari Komputer, Sistem Bilangan, dan Gerbang logika
Oleh : Ilmawan Mustaqim
Bilangan dan Kode By: Moch. Rif’an Moch. Rif'an.,ST.,MT.
SISTEM BILANGAN & SISTEM KODE
Oleh : Tim Hibah Pengajaran Mata Kuliah Teknologi Informasi Jurusan Matematika Pertemuan 4.
Ema Maliachi,S.kom Bahasa Assembly Konversi Bilangan Pertemuan ke-2.
Sistem Bilangan dan Konversi Bilangan
FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO Pengantar Teknologi Informasi (Teori) Minggu ke-04 Oleh : Ibnu Utomo WM, M.Kom.
Pengantar Teknologi Informasi
Sistem Bilangan dan Konversi Bilangan
SISTEM BILANGAN & SISTEM KODE
Ema Maliachi,S.kom Bahasa Assembly Konversi Bilangan Pertemuan ke-3.
 Sistem bilangan merupakan suatu aturan untuk menentukan nilai berdasarkan suatu bilangan tertentu  Macam bilangan : Desimal, Biner, Oktal, Heksa desimal.
XVIII. RANGKAIAN REGISTER DAN COUNTER
Sistem Bilangan dan Konversi Bilangan
15 Januari Jim Michael Widi, S.Kom - FTI UBL.
SISTEM BILANGAN Terbagi atas 4 macam yaitu : Bilangan Desimal berbasis
SISTEM BILANGAN DAN KODE BILANGAN
Pendahuluan 1.
Jurusan Teknik Elektro Fakultas Teknik UNTIRTA
Operasi Aritmatika.
FPGA DAN VHDL TEORI, ANTARMUKA DAN APLIKASI Chapter 1 Prinsip-Prinsip Sistem Digital Ferry Wahyu Wibowo © Copyright 2014 oleh Ferry Wahyu Wibowo, Deepublish.
PENDAHULUAN.
RANGKAIAN REGISTER DAN COUNTER
Sumber : Rinaldi Munir, ITB
Sistem-Sistem Bilangan
MENJELASKAN SISTEM BILANGAN
Pengantar Sistem Komputer
REPRESENTASI FIX POINT DAN FLOATING POINT
OLEH : DANANG ERWANTO, ST
Oleh Sumiasih, dayu mas, hitem wijana, artawan, swidiyasa MAHA SARASWATI DENPASAR Sistem Bilangan dan Konversi Bilangan.
Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma
Sistem Bilangan KEMENTERIAN PENDIDIKAN NASIONAL Oleh : RIZA ALFITA, S.T., M.T
IP Subnetting Oleh: Idris Winarno.
KOMUNIKASI DATA – ST014 SISTEM BILANGAN
Sistem Bilangan dan Konversi Bilangan
Bilangan Biner Pecahan dan Operasi Aritmatika
Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma
Sistem Bilangan dan Konversi Bilangan
Sistem Bilangan dan Konversi Bilangan
Sistem Bilangan Dasar pemrograman mikroprosesor Tipe : Biner Oktal
1 Kuliah Rangkain Digital Kuliah 3 : Sistem Bilangan Teknik Komputer Universitas Gunadarma.
Sistem Bilangan dan Konversi Bilangan
Sistem Bilangan dan Konversi Bilangan
Sistem Digital MOH. FURQON Program Studi Teknik Informatika
Lanjutan Sistem Bilangan
PTI Semester Ganjil Lec 2. SISTEM BILANGAN.
Konversi Bilangan.
PENGANTAR TEKNOLOGI KOMPUTER & INFORMASI – A
PERTEMUAN I (Sesi 2) SISTEM BILANGAN.
Sistem Bilangan dan Konversi Bilangan
Sistem Bilangan dan Konversi Bilangan
Pendahuluan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal.
(Number Systems & Coding)
BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data)
SISTEM BILANGAN.
MATEMATIKA EKONOMI UT HIMPUNAN dan SISTEM BILANGAN.
Sistem Bilangan dan Konversi Bilangan
Sistem Bilangan dan Konversi Bilangan
MATEMATIKA EKONOMI HIMPUNAN dan SISTEM BILANGAN Ir Tito Adi Dewanto.
PERTEMUAN KE – 3 SISTEM BILANGAN.
SISTEM BILANGAN.
M Zakaria Al Ansori Alifian Maulidzi Bayu Kris
Konversi Bilangan Temu 3.
Sistem Bilangan.
Sistem Bilangan dan Konversi Bilangan
Sistem Bilangan dan Konversi Bilangan
Konversi Bilangan Lanjutan
REPRESENTASI DATA Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma Disusun Oleh: Dr. Lily Wulandari.
Transcript presentasi:

Sistem Bilangan dan Konversi Bilangan

Pendahuluan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari – hari.

Sistem Bilangan Secara matematis sistem bilangan bisa ditulis seperti contoh di bawah ini:

Contoh: MSB LSB Bilangan desimal: 5185.6810 = 5x103 + 1x102 + 8x101 + 5x100 + 6 x 10-1 + 8 x 10-2 = 5x1000 + 1x100 + 8x10 + 5 x 1 + 6x0.1 + 8x0.01 Bilangan biner (radiks=2, digit={0, 1}) 100112 = 1  16 + 0  8 + 0  4 + 1  2 + 1  1 = 1910 MSB LSB 101.0012 = 1x4 + 0x2 + 1x1 + 0x.5 + 0x.25 + 1x.125 = 5.12510

Macam-Macam Sistem Bilangan Radiks Himpunan/elemen Digit Contoh Desimal r=10 r=2 r=16 r= 8 {0,1,2,3,4,5,6,7,8,9} 25510 Biner {0,1,2,3,4,5,6,7} 3778 {0,1} 111111112 {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F} FF16 Oktal Heksadesimal Biner 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Heksa 0 1 2 3 4 5 6 7 8 9 A B C D E F Desimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Konversi Radiks-r ke desimal Rumus konversi radiks-r ke desimal: Contoh: 11012 = 123 + 122 + 120 = 8 + 4 + 1 = 1310 5728 = 582 + 781 + 280 = 320 + 56 + 16 = 39210 2A16 = 2161 + 10160 = 32 + 10 = 4210

Konversi Bilangan Desimal ke Biner Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

Contoh: Konersi 17910 ke biner: 179 / 2 = 89 sisa 1 (LSB) / 2 = 44 sisa 1 / 2 = 22 sisa 0 / 2 = 11 sisa 0 / 2 = 5 sisa 1 / 2 = 2 sisa 1 / 2 = 1 sisa 0 / 2 = 0 sisa 1 (MSB)  17910 = 101100112 MSB LSB

Konversi Bilangan Desimal ke Oktal Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

Contoh: Konversi 17910 ke oktal: 179 / 8 = 22 sisa 3 (LSB) / 8 = 2 sisa 6 / 8 = 0 sisa 2 (MSB)  17910 = 2638 MSB LSB

Konversi Bilangan Desimal ke Hexadesimal Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

Contoh: Konversi 17910 ke hexadesimal: 179 / 16 = 11 sisa 3 (LSB) / 16 = 0 sisa 11 (dalam bilangan hexadesimal berarti B)MSB  17910 = B316 MSB LSB

Konversi Bilangan Biner ke Oktal Untuk mengkonversi bilangan biner ke bilangan oktal, lakukan pengelompokan 3 digit bilangan biner dari posisi LSB sampai ke MSB

Contoh: konversikan 101100112 ke bilangan oktal Jawab : 10 110 011 2 6 3 Jadi 101100112 = 2638

Konversi Bilangan Oktal ke Biner Sebaliknya untuk mengkonversi Bilangan Oktal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan oktal ke 3 digit bilangan biner

Contoh Konversikan 2638 ke bilangan biner. Jawab: 2 6 3 010 110 011 Jadi 2638 = 0101100112 Karena 0 didepan tidak ada artinya kita bisa menuliskan 101100112

Konversi Bilangan Biner ke Hexadesimal Untuk mengkonversi bilangan biner ke bilangan hexadesimal, lakukan pengelompokan 4 digit bilangan biner dari posisi LSB sampai ke MSB

Contoh: konversikan 101100112 ke bilangan heksadesimal Jawab : 1011 0011 B 3 Jadi 101100112 = B316

Konversi Bilangan Hexadesimal ke Biner Sebaliknya untuk mengkonversi Bilangan Hexadesimal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan Hexadesimal ke 4 digit bilangan biner

Contoh Konversikan B316 ke bilangan biner. Jawab: B 3 1011 0011 Jadi B316 = 101100112

Konversikan Bilangan di Bawah ini Kuis Konversikan Bilangan di Bawah ini 8910 = ……16 3678 = ……2 110102 = ……10 7FD16 = ……8 29A16 = ……10 1101112 = …….8 35910 = ……2 4728 = ……16