Artificial Intelligence

Slides:



Advertisements
Presentasi serupa
PEMOGRAMAN BERBASIS JARINGAN
Advertisements

Hypertext & Hypermedia
Program Keahlian I – SI By Antonius Rachmat C, S.Kom
THE FINDING A PATTERN STRATEGY STRATEGI MENEMUKAN POLA Oleh Kelompok 3.
IT SEBAGAI ALAT UNTUK MENCIPTAKAN KEUNGGULAN KOMPETISI
TEKNIK PENCARIAN (SEARCHING)
Tugas-Tugas.
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
Introduction to The Design & Analysis of Algorithms
IF-ITB/SAS/25Aug2003 IF7074 – Bagian Pertama Page 1 IF 7047 Kewirausahaan Teknologi Informasi Bagian Pertama: 1.1. Entrepreneurship, entrepreneur, dan.
susy susmartini operations research II, 2006
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
KIMIA ORGANIK II ELFI SUSANTI VH.
Internal dan Eksternal Sorting
DEPARTEMEN ILMU KOMPUTER FMIPA IPB 2011 Praktikum Bahasa Pemrograman.
Pengantar/pengenalan (Introduction)
VALUING COMMON STOCKS Expected return : the percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes.
Implementing an REA Model in a Relational Database
BENTUK ING VERB + ING. Bentuk ING juga biasa disebut dengan ING form Meskipun pembentukannya sangat se- derhana tetapi penggunaannya mem- punyai aturan.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
Linked List dan Double Linked List
We are in search of passionate and driven individual to become one of the few Management Associates who will be developed to become bright leaders in the.
Definisi VLAN Pemisahan jaringan secara logis yang dilakukan pada switch Pada tradisional switch, dalam satu switch menunjukkan satu segmentasi LAN.
Amortization & Depresiasi
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
SMPN 2 DEMAK GRADE 7 SEMESTER 2
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
Via Octaria Malau Transfer (Internal Transfers) Transfer (Transfers Internal) Select the account from which funds are to be transferred FROM and then select.
Menu Standard Competence Based Competence.
Silabus Erick Pranata © Sekolah Tinggi Teknik Surabaya 1.
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
Delivery/Inform/Convey Information with Facebook An Introduction of Information and Communication Technology.
Lecture 5 Minimax dengan αβ Pruning Erick Pranata
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Pertemuan 4 Mata Kuliah : Kecerdasan Buatan
Algoritma dan Struktur Data
Pencarian (Searching)
Proses Stokastik Semester Ganjil 2013/2014
Penyelesaian Masalah Teknik Pencarian
1 Pertemuan 16 Game Playing Continued Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/2.
Algoritma dan Struktur Data
The first reason Sebab yang pertama. skills ketrampilan.
1 Pertemuan 15 Game Playing Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/1.
Binary Search Tree. Sebuah node di Binary Search Tree memiliki path yang unik dari root menurut aturan ordering – Sebuah Node, mempunyai subtree kiri.
Jartel, Sukiswo Sukiswo
Pencarian Heuristik (Heuristic Search).
Pert. 16. Menyimak lingkungan IS/IT saat ini
Pertemuan 6 Metode Pencarian
Branch and Bound Lecture 12 CS3024.
The first reason Sebab yang pertama.
Problem solving by Searching
CSG3F3/ Desain dan Analisis Algoritma
Kuis 1 April 2017 Pilih Suatu Proyek IT
MANAJEMEN PROYEK Pertemuan 26
Pertemuan 6 Metode Pencarian
Algoritma dan Struktur Data
Algoritma dan Struktur Data
You would like to choose a gifts i.e. customised pen Singapore your business partner that will send a message from your gift and gift should nonstop the.
How You Can Make Your Fleet Insurance London Claims Letter.
How to Pitch an Event
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 3.
V ERIZON SETTINGS FOR I P HONE, A NDROID, O UTLOOK, AND W INDOWS P HONE.
HughesNet was founded in 1971 and it is headquartered in Germantown, Maryland. It is a provider of satellite-based communications services. Hughesnet.
 Zoho Mail offers easy options to migrate data from G Suite or Gmail accounts. All s, contacts, and calendar or other important data can be imported.
If you are an user, then you know how spam affects your account. In this article, we tell you how you can control spam’s in your ZOHO.
Minimalist Motion Planning Using Global Topological Guarantees
Complexity of A* Complexity is exponential unless
HOW TO IMPROVE YOUR PUBLIC SPEAKING SKILLS. 2 3 INIKAH YANG SERING ANDA ALAMI SAAT PRESENTASI?
Transcript presentasi:

Artificial Intelligence Informed Search 27/09/2010

Outline Informed Search Hill Climbing Search Greedy Best First Search A* Search

Informed Search Heuristic (informed) search -> explore the node that is most “likely” to be the nearest to a goal state. There is no guarantee that the heuristic provided most “likely” node will get you closer to a goal state than any other. Add domain-specific information to select the best path along which to continue searching Define a heuristic function, h(n), that estimates the “goodness” of a node n. Specifically, h(n) = estimated cost (or distance) of minimal cost path from n to a goal state. The heuristic function is an estimate, based on domain- specific information that is computable from the current state description, of how close we are to a goal

Hill Climbing Search If there exists a successor s for the current state n such that h(s) < h(n) h(s) <= h(t) for all the successors t of n, then move from n to s. Otherwise, halt at n. Looks one step ahead to determine if any successor is better than the current state; if there is, move to the best successor. Similar to Greedy search in that it uses h, but does not allow backtracking or jumping to an alternative path since it doesn’t “remember” where it has been.

Hill Climbing Search (cont.) Problem : may get stuck into local minima or in local maxima

Hill climbing example 2 8 3 1 6 4 7 5 1 3 8 4 7 6 5 2 start h = -4 goal h = 0 -2 -5 -5 2 8 3 1 4 7 6 5 1 3 8 4 7 6 5 2 h = -3 h = -1 -4 -3 2 3 1 8 4 7 6 5 3 1 8 4 7 6 5 2 h = -3 h = -2 -4 f(n) = -(number of tiles out of place)

Local Maximum Problem 1 2 5 7 4 8 6 3 -4 start 1 2 5 7 4 8 6 3 -3 1 2

Local Minimum Problem 1 2 5 8 4 7 6 3 start h = -3 -4 -4 1 2 5 8 4 7 6

Local-minimum problem Robot Navigation Local-minimum problem f(N) = h(N) = straight distance to the goal

Greedy Best First Search Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal e.g., hSLD(n) = straight-line distance from n to Bucharest Greedy best-first search expands the node that appears to be closest to goal

Romania with step costs in km

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Properties of greedy best first search Complete? No – can get stuck in loops, e.g., Iasi  Neamt  Iasi  Neamt  Time? O(bm), but a good heuristic can give dramatic improvement Space? O(bm) -- keeps all nodes in memory Optimal? No

Robot Navigation

Robot Navigation f(N) = h(N), with h(N) = Manhattan distance to the goal 2 1 5 8 7 3 4 6

Robot Navigation f(N) = h(N), with h(N) = Manhattan distance to the goal 8 7 6 5 4 3 2 3 4 5 6 7 5 4 3 5 6 3 2 1 1 2 4 What happened??? 7 7 6 5 8 7 6 5 4 3 2 3 4 5 6

Admissible heuristic Let h*(N) be the true cost of the optimal path from N to a goal node Heuristic h(N) is admissible if: 0  h(N)  h*(N) An admissible heuristic is always optimistic

A* Search Evaluation function: f(N) = g(N) + h(N) where: g(N) is the cost of the best path found so far to N h(N) is an admissible heuristic Then, best-first search with this evaluation function is called A* search Important AI algorithm developed by Fikes and Nilsson in early 70s. Originally used in Shakey robot.

Robot Navigation f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal and g(N) = the cost of the best path found so far between the initial node and N 7+2 8+3 2 1 5 8 7 3 4 6 8+3 7+4 7+4 6+5 5+6 6+3 4+7 5+6 3+8 4+7 3+8 2+9 2+9 3+10 7+2 6+1 2+9 3+8 6+1 8+1 7+0 2+9 1+10 1+10 0+11 7+0 7+2 6+1 8+1 7+2 6+3 6+3 5+4 5+4 4+5 4+5 3+6 3+6 2+7 2+7 3+8

Soal searching (a dan b) Selesaikan pathfinding maze berikut ini menggunakan : BFS DFS Greedy Search Algoritma A* Keterangan: Gunakan Manhattan distance untuk menghitung H(N) dan G(N) S = Start Node G = Goal Node S   G

Persiapan Pekan Depan Buat kelompok @ 4 – 5 orang => 8 kel Masing-masing kelompok dibagi untuk mempelajari algoritma pencarian : a. greedy BFS = 2 kel b. A* = 2 kel c. Minimax = 2 kel d. Alpha Beta Prunning = 2 kel Tugas masing-masing kelompok mempelajari : - pengertian - algoritma - penyelesaian soal searching (salah satu saja sesuai tugas kelompoknya) - contoh coding (sunnah) dibuat file presentasinya, diburn jadi 1 cd (sekelas) disertai referensi yang digunakan Pekan depan = presentasi. Dengan aturan sbb : 1. masing-masing kelompok mengirim 2 wakilnya untuk presentasi ke kelompok yang lain. (gantian) 2. masing-masing kelompok mengirim 1 wakil yang lain lagi, untuk presentasi di depan (per algoritma pencarian)