B O R Srikandi Kumadji DOSEN FIA UB.

Slides:



Advertisements
Presentasi serupa
OPTIMASI MULTIVARIABEL DENGAN KENDALA KESAMAAN
Advertisements

BAB III Metode Simpleks
Riset Operasional Pertemuan 9
PROGRAM LINEAR 1. PENGANTAR
DUALITAS DALAM LINEAR PROGRAMING
PENGANTAR PROGRAM LINIER & SOLUSI GRAFIK
PROGRAMA LINIER Konsep dasar
Teknik Pencarian Solusi Optimal Metode Grafis
SIMPLEKS BIG-M.
BUSINESS OPERATION RESEARCH
Operations Research Linear Programming (LP)
PROGRAM LINIER : SOLUSI SIMPLEKS
Pertemuan 3– Menyelesaikan Formulasi Model Dengan Metode Simpleks
Pertemuan 4– Analisis Post Optimal
METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM
METODE SIMPLEKS PRIMAL Evi Kurniati, STP., MT.
Riset Operasional Pertemuan 10
BENTUK PRIMAL DAN DUAL Dalam analisis Program Linear (PL) terdapat 2 bentuk, yaitu : 1. Bentuk Primal, yaitu bentuk asli dari pers. Program linear. 2.
Linear Programming Metode Simplex
KASUS KHUSUS PROGRAM LINEAR
PROGRAM LINIER : ANALISIS POST- OPTIMAL
Linear Programming.
DUALITAS DAN ANALISA SENSITIVITAS
KAPASITAS PRODUKSI.
Indrawani Sinoem/TRO/SI/07
PEMROGRAMAN LINIER Pertemuan 2.
Analisis Sensitivitas
PERTEMUAN 8-9 METODE GRAFIK
LINIER PROGRAMMING by : wasis a. latief.
Dosen : Wawan Hari Subagyo
PERTEMUAN METODE SIMPLEKS OLEH Ir. Indrawani Sinoem, MS
LINEAR PROGRAMMING METODE SIMPLEX
LINEAR PROGRAMMING Pertemuan 05
PENYELESAIAN MODEL LP PENYELESAIAN PERMASALAHAN DNG MODEL LP DAPAT DILAKUKAN DENGAN 2 METODE : (1). METODE GRAFIK Metode grafik hanya digunakan untuk.
Operations Management
Metode Simpleks Metode simpleks merupakan prosedur iterasi yang bergerak step by step dan berulang-ulang Jumlah variabel tidak terbatas Penyelesaian masalah.
KAPASITAS PRODUKSI METODE SIMPLEKS DALAM PROGRAMASI LINEAR
D0104 Riset Operasi I Kuliah VIII - X
Linier Programming Manajemen Operasional.
Metode Simpleks Dyah Darma Andayani.
Dualitas dan Analisa Sensivitas
LINEAR PROGRAMING (Bagian 3)
Pert.3 Penyelesaian Program Linier Metode Simpleks
Linear Programming Formulasi Masalah dan Pemodelan
PENYELESAIAN MODEL LP PENYELESAIAN PERMASALAHAN DNG MODEL LP DAPAT DILAKUKAN DENGAN 2 METODE : (1). METODE GRAFIK Metode grafik hanya digunakan untuk.
Program Linier (Linier Programming)
LINIER PROGRAMMING.
Metode Simpleks Free Powerpoint Templates.
METODE SIMPLEK.
LINEAR PROGRAMMING Pertemuan 06
Riset Operasional 1 Manajemen-Ekonomi PTA 16/17
LINIER PROGRAMMING by : wasis a. latief.
TEORI DUALITAS.
LINIER PROGRAMMING METODE SIMPLEX
TEORI DUALITAS D0104 Riset Operasi I.
MANAJEMEN SAINS METODE SIMPLEKS.
Program Linear dalam Industri Pakan Ternak
Operations Management
Metode Simpleks Rachmat Gunawan, SE, MSi Manajemen Kuantitatif
Program Linear dengan Metode Simpleks
PROGRAM LINIER : ANALISIS DUALITAS, SENSITIVITAS DAN POST- OPTIMAL
PROGRAM LINEAR DENGAN METODE SIMPLEKS PERTEMUAN 3
TEKNIK RISET OPERASI MUH.AFDAN SYARUR CHAPTER.1
TEKNIK RISET OPERASI DUALITAS.
SOAL Seleaikanlah sistem persamaan linear berikut dengan menggunakan metode Gauss-Jordan 3 X1+2 X2 + X3 = 7 3 X1- 2 X2 + X3 = 2 -3 X1+2 X2 + X3 = 4 HiJurusan.
DUALITAS dan ANALISIS SENSITIVITAS
PROGRAM LINIER METODE SIMPLEKS
Metode Simpleks Metode simpleks merupakan prosedur iterasi yang bergerak step by step dan berulang-ulang Jumlah variabel tidak terbatas Penyelesaian masalah.
Operations Management
Oleh : Siti Salamah Ginting, M.Pd. PROGRAM LINIER METODE SIMPLEKS.
Transcript presentasi:

B O R Srikandi Kumadji DOSEN FIA UB

L P METODE SIMPLEKS Srikandi Kumadji DOSEN FIA UB

METODE SIMPLEX

METODE SIMPLEKS P E N D A H U L U A N Kenyataan yang sering dihadapi oleh para manajer dalam pengambilan keputusan adalah kompleks. Keputusan yang harus diambil tidak hanya untuk 2 variabel saja, bisa saja lebih, sementara metode grafik terbatas hanya 2 dimensi atau paling banyak mencakup 3 variabel. Untuk mengatasi persoalan linier programming yang kompleks jelas menjadi tidak sederhana. Satu cara sederhana (simple) dan efisien yang dapat menyelesaikan persoalan adalah dengan Metode Simplex, di mana metode ini menggunakan tabel yang unik yang sering disebut “Tabel Simplek” 4

METODE SIMPLEK ….lanjt Metode simplek untuk linier programming dikembangkan pertama kali oleh George Dantzing pada tahun 1947, kemudian digunakan juga pada penugasan di Angkatan Udara Amerika Serikat. Dia mendemonstrasikan bagaimana menggunakan fungsi tujuan (iso-profit) dalam upaya menemukan solosi diantara beberapa kemungkinan solosi sebuah persoalan linier programming.

METODE SIMPLEK ….lanjt Proses penyelesaiaanya dalam metode simplek, dilakukan secara berulang-ulang (iterative) sedemikian rupa dengan menggunakan pola tertentu (standart) sehingga solusi optimal tercapai. Ciri lain dari metode simplek adalah bahwa setiap solusi yang baru akan menghasilkan sebuah nilai fungsi tujuan yang lebih besar daripada solosi sebelumnya.

Metode Simplek / Maksimasi MENYUSUN SOLUSI AWAL Untuk memperoleh pengertian yang lebih mudah dan cepat, dalam pembahasan ini kita gunakan persoalan yang meliputi 2 variabel riil saja (sekedar untuk cross cek) Dengan menggunakan contoh kasus perusahaan XYZ di muka, penyelesaian dapat dilakukan dengan beberapa langkah :

Metode Simplek / Maksimasi Langkah 1. Menyususun Persoalan Dalam Matematik Maksimumkan : TR = 3000 X1 + 3000 X2 Kendala : P : 2 X1 + X2 < 30 Q : 2 X1 + 3 X2 < 60 R : 4 X1 + 3 X2 < 72 X1, X2 > 0

Metode Simplek / Maksimasi Langkah 2. Mengubah Pertidaksamaan menjadi Persamaan Mengandung pengertian : tidak selalu kapasitas SD digunakan seluruhnya, di antaranya masih ada yang tersisa  ada kelonggaran (slack) untuk menambah sebuah variabel sehingga menjadi persamaan. Variabel baru ini disebut Variabel Slack Variabel Slack = sejumlah unit kapasitas yang tidak dipakai dalam suatu Departemen/ SD.

Metode Simplek / Maksimasi Langkah 2. Mengubah Pertidaksamaan menjadi Persamaan Misal : SP = waktu yang tidak dipakai dlm. Dep. P  S1 = 30 - 2 X1 - X2 SQ = waktu yang tidak dipakai dlm. Dep.Q  S2 = 60 - 2 X1 - 3 X2 SR = waktu yang tidak dipakai dlm. Dep. R  S3 = 72 - 4 X1 - 3 X2 Atau dari persamaan di atas dapat disusun : 2 X1 + X2 + S1 = 30 2 X1 + 3 X2 + S2 = 60 4 X1 + 3 X2 + S3 = 72

Metode Simplek / Maksimasi Variabel Slack ini harus dimasukkan dalam fungsi tujuan dan kendala. Koefisien setiap variabel pada kedua fungsi tsb. harus terlihat dengan jelas. Oleh karena itu, untuk variabel yang tidak mempunyai pengaruh terhadap persamaan, koefisiennya harus ditulis dengan “nol”, sehingga tidak merubah hakekatnya.

Metode Simplek / Maksimasi Misalkan, karena : S1, , S2 dan S3 tidak menghasilkan TR, S2, dan S3 tidak berpengaruh terhadap Dep. P, S1 dan S3 tidak berpengaruh terhadap Dep. Q, dan S1, dan S2 tidak berpengaruh terhadap Dep. R, maka fungsi tujuan dan kendala dapat ditulis sbb. : TR = 3000 X1 + 3000 X2 + 0 S1 + 0 S2 + 0 S3 . P : 2 X1 + X2 + 1 S1 + 0 S2 + 0 S3 = 30 Q : 2 X1 + 3 X2 + 0 S1 + 1 S2 + 0 S3 = 60 R : 4 X1 + 3 X2 + 0 S1 + 0 S2 + 1 S3 = 72

Metode Simplek / Maksimasi TR = 3000 X1 + 3000 X2 + 0 S1 + 0 S2 + 0 S3 . P : 2 X1 + X2 + 1 S1 + 0 S2 + 0 S3 = 30 Q : 2 X1 + 3 X2 + 0 S1 + 1 S2 + 0 S3 = 60 R : 4 X1 + 3 X2 + 0 S1 + 0 S2 + 1 S3 = 72 Langkah 3. Memasukkan Fungsi Tujuan dan Kendala ke Tabel Simplek Zj =  aij . Bi Sollusi Awal, belum berproduksi, Zj = 0

MENGEMBANGKAN SOLUSI KEDUA Metode Simplek / Maksimasi MENGEMBANGKAN SOLUSI KEDUA Solusi awal menunjukkan perusahaan masih belum berproduksi. Selanjutnya kita akan melakukan perubahan sehingga TR sebagai tujuan tercapai lebih baik. Jika tabel yang telah diperbaiki masih ada kemungkinan diubah untuk mencapai tujuan yang lebih baik lagi, maka perubahanpun terus berlanjut sampai tercapai solusi yang optimal.

MENGEMBANGKAN SOLUSI KEDUA Metode Simplek / Maksimasi MENGEMBANGKAN SOLUSI KEDUA Tahap-tahap perubahan dari tabel satu ke tabel yang lain disebut “pivoting”. Perhitungan solusi kedua dapat diikuti dengan langkah- langkah berikut ini.

Metode Simplek / Maksimasi Langkah 1. Menentukan Variabel Riil yang akan dimasuk- kan dalam solusi (going in) Secara rasional, memilih varibel riil yang tepat adalah variabel yang mempunyai kontribusi menambah laba/TR atau mengurangi biaya yang paling besar. Dengan memilih nilai-nilai baris Cj - Zj pada kolom variabel riil yang terbesar, mengindikasikan adanya peningkatan laba/TR yang lebih baik.

Metode Simplek / Maksimasi Langkah 1. Menentukan Variabel Riil yang akan dimasuk- kan dalam solusi (going in) Oleh karena Nilai Cj - Zj untuk kedua kolom variabel riil X1 dan X2 sama, maka bisa kita pilih salah satu. Misalnya saja, kita tentukan kolom X2, maka kolom X2 tersebut dinamakan “kolom optimum”, yang bakal pertamakalinya masuk dalam kolom variabel basis.

Metode Simplek / Maksimasi Langkah 2. Menentukan Variabel yang akan diganti (going out) Pertama kali, kita membagi nilai-nilai dalam kolom variabel basis dengan nilai-nilai pada kolom optimum, dan kemudian hasil bagi-hasil bagi tersebut kita pilih yang paling kecil. Baris yang mempunyai nilai “Ri” terkecil bakal diganti atau dikeluarkan dari variabel basis. Baris S1 : 30 / 1 = 30 Baris S2 : 60 / 3 = 20  dikeluarkan Baris S3 : 72 / 3 = 24

Metode Simplek / Maksimasi Langkah 2. Menentukan Variabel yang akan diganti (going out) Baris S1 : 30 / 1 = 30 Baris S2 : 60 / 3 = 20  dikeluarkan Baris S3 : 72 / 3 = 24 Elemen-elemen (nilai) pada basis S1, S2 dan S3 di bawah kolom optimum, disebut elemen interseksi-onal, yang akan berperan dalam perhitungan nilai nilai pada tabel berikutnya.

Aplikasi Langkah 1 dan Langkah 2 Langkah 1 : menentukan kolom optimum (going in) Langkah 2 : menentukan baris optimum (going out)

Menentukan / Menghitung : - Nilai baris baru yang masuk : NBBM = NBL : N Insek : 60/3 = 20 ; 2/3 = 2/3 ; 3/3 = 1; 0/3 = 0 ; 1/3 = 1/3; 0/3 = 0 - Nilai baris baru yang lain : NBBL= NBL (N Intsek x NBBM) Baris Sp : 30  ( 1 x 20) = 10 2  ( 1 x 2/3) = 1 1/3 1  ( 1 x 1) = 0 1  ( 1 x 0) = 1 0  ( 1 x 1/3) = -1/3 0  ( 1 x 0) = 0 Baris Sr : 72  ( 3 x 20) = 12 4  ( 3 x 2/3) = 2 3  ( 3 x 1) = 0 0  ( 3 x 0) = 0 0  ( 3 x 1/3) = -1 1  ( 3 x 0) = 1

MENGEMBANGKAN SOLUSI KETIGA Menentukan / Menghitung : MENGEMBANGKAN SOLUSI KETIGA - Kolom optimum : pilih nilai Cj - Zj yang terbesar - Baris yang diganti : Pilih nilai Ri yang terkecil Ri = nilai Q / kolom optimum - Nilai baris baru yang masuk : NBBM = NBL : N Insek : 12/2 = 6 ; 2/2 =1 ; 0/2 = 0; 0/2 = 0; -1/2 = - 0,5; 1/2 = 0,5 - Nilai baris baru yang lain : NBBL= NBL(N Intsek x NBBM) Baris Sp : 10  (1,33 x 6) = 2 1,33  (1,33 x1) = 0 0  (1,33 x 0) = 0 1  (1,33 x 0) = 1 - 0,33  (1,33 x -0,5) = 0,33 0  (1,33 x 0,5) = - 0.67 Baris B : 20  (0,67 x6) = 16 0,67  (0,67 x 1) = 0 1  (0,67 x 0) = 1 0  (0,67 x 0) = 0 0,33  (0,67 x - 0,5) = 0,67 0  (0,67 x 0,5) = - 033 NILAI-NILAI Cj - Zj < 0  SOLUSI OPTIMAL

INTERPERTASI EKONOMI TABEL SIMPLEK Nilai2 pada Kolom Q Tabel 3 : Baris Sp = 2 (Sisa Sbrdaya P) Baris X2 = 16 (Jml Prdksi X2) Baris X1= 6 (Jml Prdksi X1) Baris Zj = 66000 (TR max.) Nilai2 pada Baris Cj-Zj di bawah kolom variabel riil menunjukkan nilai produk marginal : Jika positif menunjukkan kemungkinan tambahan TR jika variabel riil ditambah 1 unit Jika negatif menunjukkan pengurangan TR jika variabel riil ditambah 1 unit Anga-angka dalam kwadran matrik (input-output) atau diberi simbul aij menunjukkan MRTS atau Koefisien Teknologi antara kegiatan pada kolom dengan sbrdaya pada baris. Nilai2 Negatif pada Baris Cj-Zj di bawah kolom variabel Slack : menunjukkan tambahan TR yg dapat dicapai jika ditambahkan 1 jam lagi pada departemen diwakili variabel slack Nilai2 di baris Zj menggambarkan berkurangnya TR (oportunity cost) akibat tambahan 1 unit kegiatan riil atau disposal

INTERPERTASI EKONOMI TABEL SIMPLEK Nilai2 pada Kolom Q Tabel 3 : Baris Sp = 2 (Sisa Sbrdaya P) Baris X2 = 16 (Jml Prdksi X2) Baris X1= 6 (Jml Prdksi X1) Baris Zj = 66000 (TR max.) Nilai2 pada Baris Cj-Zj di bawah kolom variabel riil menunjukkan nilai produk marginal : Jika positif menunjukkan kemungkinan tambahan TR jika variabel riil ditambah 1 unit Jika negatif menunjukkan pengurangan TR jika variabel riil ditambah 1 unit Angka-angka dalam kwadran matrik (input-output) atau diberi simbul aij menunjukkan MRTS atau Koefisien Teknologi antara kegiatan pada kolom dengan sbrdaya pada baris. Nilai2 Negatif pada Baris Cj-Zj di bawah kolom variabel Slack : menunjukkan tambahan TR yg dapat dicapai jika ditambahkan 1 jam lagi pada departemen diwakili variabel slack Nilai2 di baris Zj menggambarkan berkurangnya TR (oportunity cost) akibat tambahan 1 unit kegiatan riil atau disposal

Metode Simplek / Minimasi CONTOH : PERUSAHAAN PNT Perusahaan Nutrisi Ternak (PNT) khusus menghasilkan makanan campuran sebagai makanan tambahan, mendapat pesanan makanan campuran "141-B" dengan ukuran/paket 200 pon. Makanan Campuran tersebut terdiri dari dua bahan ramuan , yaitu P (sumber protein) dan C (sumber karbohidrat). Biaya bahan protein sebesar $ 3 per pon, sedang bahan karbohidrat sebesar $ 8 per pon. Dalam makanan campuran itu kandungan Protein (P) tidak boleh melebihi 40 % dan kandungan bahan Carbohidrat (C) paling tidak tersedia 30 %. Persoalan PNT adalah menetapkan berapa banyak masing-masing bahan digunakan agar biaya minimal. FORMULASI MATEMATIKA PERSOALAN ( IDENTIFIKASI) Minimumkan : Cost = $ 3X1+ $ 8X2 Kendala : X1 + X2 = 200 pon X1 < 80 pon X2 > 60 pon X1 dan X2 > 0

Metode Simplek / Minimasi CONTOH : PERUSAHAAN PNT Perusahaan Nutrisi Ternak (PNT) khusus menghasilkan makanan campuran sebagai makanan tambahan, mendapat pesanan makanan campuran "141-B" dengan ukuran/paket 200 pon. Makanan Campuran tersebut terdiri dari dua bahan ramuan , yaitu P (sumber protein) dan C (sumber karbohidrat). Biaya bahan protein sebesar $ 3 per pon, sedang bahan karbohidrat sebesar $ 8 per pon. Dalam makanan campuran itu kandungan Protein (P) tidak boleh melebihi 40 % dan kandungan bahan Carbohidrat (C) paling tidak tersedia 30 %. Persoalan PNT adalah menetapkan berapa banyak masing-masing bahan digunakan agar biaya minimal. FORMULASI MATEMATIKA PERSOALAN ( IDENTIFIKASI) Minimumkan : Cost = $ 3P+ $ 8C Kendala : P + C = 200 pon P < 80 pon C > 60 pon P dan C > 0

Metode Simplek / Minimasi SOLUSI AWAL Merubah persamaan dan pertidaksamaan pada kendala Untuk tanda Persamaan ( = ) harus ditambah dengan variabel Artifisial (A) Untuk Pertidaksamaan”lebih besar sama dengan” ( > ) harus dikurangi variabel surplus (S) dan ditambah Untuk Pertidaksamaan kurang sama dengan ( < ) harus ditambah variabel slack (S) Untuk Kendala : X1 + X2 = 200  X1 + X2 + A1 = 200 X1 < 80  X1 + S1 = 80 X2 > 60  X2  S2 + A2 = 60

Metode Simplek / Minimasi SOLUSI AWAL Koefisien teknologi (parameter) masing-masing variabel , secara ekplisit harus ditulis, dengan ketentuan yang tidak ada pengaruhnya ditulis nol Nilai biaya untuk variabel Artifisial diberi nilai yang sangat besar (M), dan untuk variabel Slack/Surplus = 0 Secara lengkap : Minimize: Cost = 3 X1 + 8 X2 + 0S1 + 0S2 + MA1 + MA2 X1 + X2 + A1 = 200 X1 + S1 = 80 X2  S2 + A2 = 60 X1, X2, S1, S2, A1, A2 > 0

Metode Simplek / Minimasi SOLUSI TABEL SIMPLEK Metode Simplek / Minimasi

Metode Simplek / Minimasi SOLUSI TABEL SIMPLEK Metode Simplek / Minimasi

DUALITAS ANTARA MAKSIMASI dan MINIMASI Untuk setiap permasalahan optimasi yang mempunyai kendala/pembatas, akan terdapat “permasalahan dual”, yaitu dengan memaksimasi atau meminimasi fungsi ken-dala dan fungsi tujuan sebelumnya menjadi kendalanya. Hubungan ini disebut sebagai dualitas (duality) Permasalahan yang pertama disebut dengan “primal” dan permasalahan kedua disebut dengan “dual”. Jadi misalnya, jika permasalahan primalnya adalah maksimasi tujuan dengan kendala tertentu, maka sekarang menjadi dual, yaitu minimasi kendala dengan kendalanya adalah fungsi tujuannya. Demikian sebaliknya, jika permasalahan primalnya adalah minimasi tujuan dengan kendala tertentu, maka sekarang menjadi maksimasi kendala dengan fungsi tujuan sebagai kendalanya.

Dengan demikian dalam sebuah pemodelan Pemrograman Linear, terdapat dua konsep yang saling berlawanan. Konsep yang pertama kita sebut Primal dan yang kedua Dual.Bentuk Dual adalah kebalikan dari bentuk Primal. Hubungan Primal dan Dual sebagai berikut: Masalah Primal (atau Dual) Masalah Dual (atau Primal) Koefisien fungsi tujuan …………… Nilai kanan fungsi batasan Maksimumkan Z (atau Y) ………… Minimumkan Y (atau Z) Batasan i …………………………… Variabel yi (atau xi) Bentuk < …………………………. yi > 0 Bentuk = …………………………… yi > dihilangkan Variabel Xj ………………………. . Batasan j Xj > 0 ………………………………. Bentuk < Xj > 0 dihilangkan ………………… Bentuk =

Contoh 1: Primal Minimumkan Z = 5X1 + 2X2 + X3 Fungsi batasan: 1) 2X1 + 3X2 + X3 > 20 2) 6X1 + 8X2 + 5X3 > 30 3) 7X1 + X2 + 3X3 > 40 X1 , X2 , X3 > 0 Dual Maksimumkan Z ’ = 20Y1 + 30Y2 + 40Y3 Fungsi batasan: 1) 2Y1 + 6Y2 + 7Y3 < 5 2) 3Y1 + 8Y2 + Y3 < 2 3) Y1 + 5Y2 + 3Y3 < 1

CONTOH : ( Ek. Mikro) d C / d L =  PL/ PC  300 / L2 =  30/ 40 PRIMAL DUAL Maksimumkan : Q = L . C Kendala : 1200 = 30L + 40C L dan C optimum = ? Jawab Slope Isoquant = Slope Budget Line  MPL / MPC =  PL/ PC  C / L =  30/ 40 C = 3 / 4 L 1200 = 30L + 40 (3 / 4 L ) 1200 = 60L Jadi : L = 20 dan C = 15 Q max. = 20 x 15 = 300 Minimumkan : B = 30L + 40C Kendala : 300 = L . C L dan C optimum = ? Jawab Slope Isoquant = Slope Budget Line d C / d L =  PL/ PC  300 / L2 =  30/ 40 L2 = 400 Jadi : L = (400)1/2 = 20 dan C = 15 Bmin. = 30(20) + 40 (15 ) = 1200

CONTOH : USAHA KATERING (RANGSUM) Kasus Primal sebuah usaha kesehatan dalam rangka membuat susunan rangsum dari berbagai bahan makanan dengan biaya murah adalah sbb. : Minimumkan : Z = 150X1 + 100X2 + 350X3 + 250X4 + 320X5 Kendala : Protein : 8,3 X1 + 246 X2 + 17,2 X3 + 5,2 X4 + 2,01 X5 > 70 Karbohidrat : 5 X1 + 26 X2 + 595 X3 + 3,1 X4 + 4 X5 > 3000 Lemak : 0,4 X1 + 793 X2 + 14,8 X3 + 0,6 X4 + 0,16 X5 > 800 Vitamin : 6 X1 + 93 X2 + 61,6 X3 + 6,8 X4 + 2,05 X5 > 40 Zat Besi : 24,9 X1 + 243 X2 + 810 X3 + 16,4 X4 + 0,57 X5 > 12 Dimana : X1 = Nasi X4 = Buah X2 = Sayur X5 = Susu X3 = Lauk pauk Buatlah model Dual persoalan di atas, dan selesaikan !

JAWAB : Maksimumkan : Z’ = 70Y1 + 3000Y2 + 800Y3 + 40Y4 + 12Y5 Kendala : X1 : 8,3 Y1 + 5,0 Y2 + 0,4 Y3 + 6,0 Y4 + 24,9 Y5 < 150 X2 : 246 Y1 + 26 Y2 + 793 Y3 + 93 Y4 + 243 Y5 < 100 X3 : 17,2 Y1 + 595 Y2 + 14,8 Y3 + 61,6 Y4 + 810 Y5 < 350 X4 : 5,2 Y1 + 3,1 Y2 + 0,6 Y3 + 6,8 Y4 + 16,4 Y5 < 250 X5 : 2,01 Y1 + 4 Y2 + 0,16 Y3 + 2,05 Y4 + 0,57 Y5 < 320 Y1 , Y2, Y3, Y4 , Y5 > 0

SOLUSI

Semoga bermanfaat dan Selamat Belajar

Soal N0. 8 Perusahaan mebel Jati Indah memproduksi meja dan kursi dari sumberdaya tenaga kerja dan kayu. Perusahaan memiliki kapasitas terbatas untuk tenaga kerja 80 jam perhari dan 36 Kg kayu perhari. Permintaan atau penjualan kursi terbatas 6 kursi per hari. Untuk memproduksi satu unit kursi memerlukan 8 jam tenaga kerja dan 2 Kg kayu, sedang setiap satu meja memerlukan 10 jam tenaga kerja dan 6 Kg kayu. Laba yang diperoleh untuk setiap meja sebesar Rp 40.000 dan untuk setiap kursi sebesar Rp 50.000. Perusahaan ingin menetapkan jumlah meja dan kursi yang harus dijual agar memperoleh laba maksimum. a. Formulasikan model LP untuk persoalan ini. b. Selesaikan persoalan ini dengan analisis grafik.

SOAL N0. 8

Soal N0.12 Perusahaan Kimia Farma memproduksi sebuah obat dengan ramuan dua bahan. Setiap bahan berisi tiga antibiotik yang sama tapi berbeda dalam proporsinya. Satu gram bahan 1 menyumbangkan 3 unit dan bahan 2 menyumbangkan1 unit antibiotik 1; obat membutuhkan 6 unit. Sedikitnya 4 unit antibiotik 2 dibutuhkan, dan per gram bahan masing-masing menyumbang 1 unit. Paling sedikit 12 unit antibiotik 3 diperlukan; satu gram bahan 1 menyumbang 2 unit, dan satu gram bahan 2 menyumbang 6 unit. Biaya per gram bahan 1 dan bahan 2 masing-masing Rp 80.000 dan Rp 50.000. Kimia Farma ingin memformulasikan model LP untuk menetapkan jumlah (gram) ma-sing-masing bahan yang harus digunakan dalam pembuatan obat agar biaya campuran antibiotik itu serendah mungkin. a. Formulasikan model LP untuk persoalan ini. b. Selesaikan persoalan ini dengan menggunakan analisis grafik.

KASUS Obat

KASUS Usaha Ternak Min. TC = 60A + 100K Stc. Pr : 20 A + 40 K > 30 Lm : 2 A + 0,5 K > 1 Prod. : 1 A + 1 K < 1 A, K ,> 0 78,57143 78,57143 78,57143 Sd A K kap Slack Pr 20 40 > 30 Lm 2 0,5 > 1 Prod 1 < 1 0,07 Solusi 0,36 0,57 TC 21,43 57,14 78,57

KASUS Della & Pandu Mak. L = 2C + 2T Stc. K : 8 C + 6 T < 120 Tom : 3 C + 6 T < 90 B : 3 C + 2 T < 45 Prod : 1 C + 1 T < 24 C, T > 0 78,57143 78,57143 78,57143 Sd C T kap Slack K 8 6 < 120 Tom 3 < 90 B 2 < 45 Prod 1 < 24 Solusi 12 Laba 24 36

KASUS Untitled Mak. L = 3 X + 2 Y Stc. A : 3 X + 2 Y < 120 F : 1 X + 2 Y < 80 Pro X : 1 X + 0 Y > 10 Pro Y : 0 X + 1 Y > 10 X, Y > 0 Sd X Y kap S A 3 2 < 120 F 1 < 80 26,67 Pro X - > 10 13,33 Pro Y Solusi 33,33 10 Laba 100 20 120

Terima kasih