Applications of Matrix and Linear Transformation in Geometric and Computational Problems by Algebra Research Group Dept. of Mathematics Course 2
What do you see?
About Matrix Why Matrix ? Matrix Operations : Summation and Multiplications Invers Matrix Determinant
What you know All about (1x1) matrices OperationExampleResult o Addition o Subtraction5 – 14 o Multiplication2 x 24 o Division12 / 34
What you may guess Numbers can be organized in boxes, e.g.
Matrix Notation
Many Numbers
Matrix Notation
Useful Subnotation
Matrix Operations Addition Subtraction Multiplication Inverse
Addition
Addition
Addition Conformability To add two matrices A and B: # of rows in A = # of rows in B # of columns in A = # of columns in B
Subtraction
Subtraction
Subtraction Conformability To subtract two matrices A and B: # of rows in A = # of rows in B # of columns in A = # of columns in B
Multiplication Conformability Regular Multiplication To multiply two matrices A and B: # of columns in A = # of rows in B Multiply: A (m x n) by B (n by p)
Multiplication General Formula
Multiplication I
Multiplication II
Multiplication III
Multiplication IV
Multiplication V
Multiplication VI
Multiplication VII
Inner Product of a Vector (Column) Vector c (n x 1)
Inverse A number can be divided by another number - How do you divide matrices? Note that a / b = a x 1 / b And that a x 1 / a = 1 1 / a is the inverse of a
Unany operations: Inverse Matrix ‘ equivalent ’ of 1 is the identity matrix Find A -1 such that A -1 * A = I
Unary Operations: Inverse
Inverse of 2 x 2 matrix Find the determinant = (a 11 x a 22 ) - (a 21 x a 12 ) For det( A ) = (2x3) – (1x5) = 1 o A determinant is a scalar number which is calculated from a matrix. This number can determine whether a set of linear equations are solvable, in other words whether the matrix can be inverted.
Inverse of 2 x 2 matrix Swap elements a 11 and a 22 Thus becomes
Inverse of 2 x 2 matrix Change sign of a 12 and a 21 Thus becomes
Inverse of 2 x 2 matrix Divide every element by the determinant Thus becomes (luckily the determinant was 1)
Inverse of 2 x 2 matrix Check results with A -1 A = I Thus equals
Outer Product of a Vector (Column) vector c (n x 1) Solving System of Linear Equtions
–3x + 2y – 6z = 6……(1) 5x + 7y – 5z = 6……(2) x + 4y – 2z = 8 …….(3) Using ELIMINATION of X
What is ellimination? Elementer Row Operations
Elementer Row Operations (ERO)
Elementer Row Operation (ERO)
Rewrite only the coefficient –3 x + 2 y – 6 z = 6 5 x + 7 y – 5 z = 6 x + 4 y – 2 z = 8
ERO only on the coefficient
Solving System of Linear Equations using Matrix –3 x + 2 y – 6 z = 6 5 x + 7 y – 5 z = 6 x + 4 y – 2 z = 8
Linear Transformation
Morphing is just a linear transformation between a base shape and a target shape.
Ruang Berdimensi 2 Ruang berdimensi 2 merupakan kumpulan titik-titik (vektor) berikut Anggota / elemen pada ruang berdimensi 2 disebut vektor dengan dua komponen.
Ruang Berdimensi 3 Ruang berdimensi 3 merupakan kumpulan titik-titik berikut Anggota / elemen pada ruang berdimensi 3 disebut vektor dengan tiga komponen.
Transformasi linear pada ruang dimensi 2 dan 3 Transformasi linear f adalah fungsi atau yang mempunyai sifat
Contoh transformasi linear pada ruang dimensi 2 Pencerminan terhadap sumbu x Proyeksi terhadap sumbu y Rotasi sebesar 90 derajat berlawanan arah dengan jarum jam
Matriks representasi pencerminan terhadap sumbu x (1) Diberikan fungsi berikut dengan definisi Namakan
Matriks representasi pencerminan terhadap sumbu x (2) Pemetaan tersebut dapat dinyatakan sebagai Dapat dicari bayangan titik P (2,4) ketika dicerminkan terhadap sumbu x sbb :
Matriks representasi proyeksi terhadap sumbu x (1) Didefinisikan proyeksi terhadap sumbu x di ruang berdimensi 3 sebagai berikut Namakan
Matriks representasi proyeksi terhadap sumbu x (2) Jadi proyeksi terhadap sumbu x di ruang berdimensi 3 dapat dinyatakan dengan Bayangan titik P (1,2,3) adalah
Gambar semula
Hasil transformasi (1)
Hasil transformasi (2)
Hasil transformasi (3)
Kesimpulan (1) Penggunaan Matriks dalam SPL Masalah/ProblemSPL Matriks Augmented Bentuk Eselon Baris tereduksi SPL Baru Solusi/ Penyelesaian
Kesimpulan (1) Penggunaan Matriks dalam SPL MasalahSistem Persamaan LinearMatriks yang diperluasBentuk eselon baris tereduksiPenyelesaian
Kesimpulan (2) Hubungan Transformasi Linear dan Matriks Setiap transformasi linear dapat diwakili oleh suatu matriks. Sebaliknya, suatu matriks dapat membangkitkan suatu transformasi linea r