D e r e t MATEMATIKA EKONOMI http://rosihan.web.id.

Slides:



Advertisements
Presentasi serupa
TURUNAN/ DIFERENSIAL.
Advertisements

BUNGA A. PENGERTIAN Bunga (Interest) adalah tambahan uang sebagai jasa atas sejumlah modal yang ditanam atau kelebihan pembayaran dari yang seharusnya.
UNIVERSITAS MERCU BUANA JAKARTA
Universitas Islam Negeri Maulana Malik Ibrahim Malang
03/04/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
Analisis Nilai Waktu Uang
Nilai Waktu Uang Time Value of Money.
NILAI WAKTU UANG (TIME VALUE OF MONEY)
DERET Cherrya Dhia Wenny, S.E..
BAB 4 DERET Kuliah ke 2.
Studi Kelayakan Bisnis
NILAI WAKTU UANG (TIME VALUE OF MONEY)
D e r e t MATEMATIKA EKONOMI.
D e r e t MATEMATIKA EKONOMI.
MATHEMATICS FOR BUSINESS
DERET HITUNG & DERET UKUR
SRI NURMI LUBIS, S.Si.
 Mahasiswa dapat menyelesaikan ketiga deret tersebut.
ASIKNYA BELAJAR MATEMATIKA
BARISAN DAN DERET ARITMETIKA
Barisan dan Deret Geometri
MATEMATIKA EKONOMI Bagian 1 - Deret
MATEMATIKA BISNIS Pertemuan Ke-9 dan Ke-10 Hani Hatimatunnisani, S.Si
POLA BILANGAN.
STATISTIKA kelas XI/I PENYAJIAN DATA Sri Wahyuni ( )
DERET DALAM HITUNGAN KEUANGAN
Diskripsi Mata Kuliah Memberikan gambaran dan dasar-dasar pengertian serta pola pikir yang logis sehubungan dengan barisan dan deret bilangan yang tersusun.
BAB 3 BUNGA MAJEMUK.
7. INDUKSI MATEMATIKA.
Fungsi Non Linnear Penerapan dalam Ekonomi
Logaritma & Deret (point 1)
Tutorial #1. Hukum Kirchhoff simpul super 1A 55 10  55 Penerapan Hukum Kirchhoff Tentukan tegangan dan arus di resistor.
PANGKAT, AKAR, LOGARITMA, BANJAR dan DERET
Materi Matematika Bisnis
Penerapan Integral Tertentu dalam Ekonomi dan Bisnis
Barisan, Deret, Notasi Sigma dan Induksi Matematika
Penerapan Barisan dan Deret
NILAI WAKTU DARI UANG (LANJ 2)
BAB 4 DERET Deret adalah rangkaian bilangan yang tersusun secara teratur dan memenuhi kaidah - kaidah tertentu. Bilangan - bilangan yang merupakan unsur.
NILAI WAKTU UANG (TIME VALUE OF MONEY)
TIME VALUE OF MONEY.
PROGRAM STUDI MANAJEMEN/AKUNTANSI UNIVERSITAS PGRI ADI BUANA SURABAYA
Matematika Keuangan Pertemuan 14
MATEMATIKA EKONOMI Bagian 1 - Deret DOSEN FEBRIYANTO, SE., MM.
(Bunga dihitung berdasarkan modal awal)
BAB 4 DERET Deret adalah rangkaian bilangan yang tersusun secara teratur dan memenuhi kaidah - kaidah tertentu. Bilangan - bilangan yang merupakan unsur.
PERTEMUAN 2 DERET DAN TERAPANNYA.
KONSEP NILAI UANG TERHADAP WAKTU
UNIVERSITAS MERCU BUANA JAKARTA 2013
SRI SULASMIYATI, S.SOS., MAP
DERET Bab 4 Dumairy.
NILAI WAKTU UANG Hasim As’ari.
DERET Bab 4 Dumairy.
NILAI WAKTU UANG (TIME VALUE OF MONEY)
D e r e t MATEMATIKA EKONOMI.
MATEMATIKA EKONOMI Pertemuan 3: Deret dan Penerapannya
BUNGA MAJEMUK.
BARISAN DAN DERET DAN PENERAPANNYA.
PENDAHULUAN.
DERET ialah rangkaian bilangan yang tersusun secara teratur dan memenuhi kaidah-kadiah tertentu. Bilangan-bilangan yang merupakan unsur dan pembentuk sebuah.
PERTEMUAN X Perhitungan Bunga dan Nilai Uang
D e r e t MATEMATIKA EKONOMI.
DERET & PENERAPANNYA Jaka Wijaya Kusuma M.Pd Matematika Ekonomi.
Baris & Deret : Penerapan Ekonomi
NILAI WAKTU UANG (TIME VALUE OF MONEY)
MATEMATIKA EKONOMI Pertemuan 3: Deret dan Penerapannya
MATEMATIKA EKONOMI Pertemuan 3: Deret dan Penerapannya
DERET.
D E R E T.
Garis Waktu Mohammad Habibi, SE., M.Si. Pertemuan ke-4 STAI An Najah Indonesia Mandiri SIDOARJO 2019.
Transcript presentasi:

D e r e t MATEMATIKA EKONOMI http://rosihan.web.id

Materi yang diperlajari Deret Hitung - Suku ke-n dari DH - Jumlah n suku Deret Ukur - Suku ke-n dari DU Dan penerapannya dalam dunia ekonomi http://rosihan.web.id

Definisi Deret : Rangkaian bilangan yang tersusun secara teratur dan memenuhi kaidah-kaidah tertentu. Suku : Bilangan-bilangan yang merupakan unsur dan pembentuk deret. Macam-macam deret : - Deret Hitung - Deret Ukur - Deret Harmoni http://rosihan.web.id

Deret Hitung Deret hitung : deret yang perubahan suku-sukunya berdasarkan penjumlahan terhadap sebuah bilangan tertentu. Bilangan yang membedakan suku-suku dari deret hitung dinamakan pembeda, yang tak lain adalah selisih antara nilai dua suku yang berurutan. Contoh : 5, 10, 15, 20, 25, 30 (pembeda 5) 90, 80, 70, 60, 50, 40 (pembeda -10) http://rosihan.web.id

Suku ke-n dari Deret Hitung 5, 10, 15, 20, 25, 30 S1, S2, S3, S4, S5, S6 S1 = 5 = a S2 = 10 = a + b = a + (2 - 1)b S3 = 15 = a + 2b = a + (3 - 1)b S4 = 20 = a + 3b = a + (4 - 1)b S5 = 25 = a + 4b = a + (5 - 1)b S6 = 30 = a + 5b = a + (6 - 1)b Sn = a + (n - 1)b a = suku pertama / s1 b = pembeda n = indeks suku http://rosihan.web.id

Jumlah n Suku Jumlah sebuah deret hitung sampai dengan suku tertentu tidak lain adalah jumlah nilai suku-sukunya. http://rosihan.web.id

Berdasarkan rumus suku ke-n  Sn = a + (n - 1)b, maka dapat diuraikan J4 = a + (a + b) + (a + 2b) + (a + 3b) = 4a + 6b J5 = a + (a + b) + (a + 2b) + (a + 3b) + (a + 4b) = 5a + 10b J6 = a + (a + b) + (a + 2b) + (a + 3b) + (a + 4b) + (a + 5b) = 6a + 15b http://rosihan.web.id

Masing-masing Ji dapat ditulis Sn http://rosihan.web.id

Deret Ukur Deret ukur : deret yang perubahan suku-sukunya berdasarkan perkalian terhadap sebuah bilangan tertentu. Bilangan yang membedakan suku-suku sebuah deret ukur dinamakan pengganda. Contoh : 5, 10, 20, 40, 80, 160 (pengganda 2) 512, 256, 128, 64, 32, 16 (pengganda 0,5) http://rosihan.web.id

Suku ke-n dari Deret Ukur http://rosihan.web.id

Jumlah n Suku http://rosihan.web.id

http://rosihan.web.id

Model Perkembangan Usaha Jika perkembangan variabel-variabel tertentu dalam kegiatan usaha, misalnya : produksi, biaya, pendapatan, penggunaan tenaga kerja dll. Memiliki pola seperti deret hitung, maka prinsip-prinsip deret hitung dapat diterapkan dalam menganalisis perkembangan vaiabel tersebut. Pelajari Kasus 1 dan 2 http://rosihan.web.id

Model Bunga Majemuk Modal pokok P dibungakan secara majemuk, suku bunga perahun i, maka jumlah akumulatif modal F setelah n tahun adalah: Jumlah di masa datang dari jumlah sekarang : Bunga dibayar 1x setahun http://rosihan.web.id

m = frekuensi pembayaran bunga dalam setahun Bila bunga dibayar lebih sekali dalam setahun, misal m kali, maka : m = frekuensi pembayaran bunga dalam setahun Suku (1+i) dan (1 + i/m) disebut “faktor bunga majemuk” (compounding interest factor), yaitu suatu bilangan yang lebih besar dari 1, yang dapat dipakai untuk menghitung jumlah dimasa mendatang dari suatu jumlah sekarang. http://rosihan.web.id

Dengan manipulasi matematis, bisa diketahui nilai sekarang (present value) : Suku 1/(1+i)n dan 1/(1+i/m)mn dinamakan “faktor diskonto” (discount factor), yaitu suatu bilangan lebih kecil dari 1 yang dapat dipakai untuk menghitung nilai sekarang dari suatu jumlah dimasa datang. http://rosihan.web.id

Model Pertumbuhan Penduduk Pt = P1 R t-1 Dimana R = 1 + r P1 = jumlah pada tahun pertama (basis) Pt = jumlah pada tahun ke-t r = persentase pertumbuhan per-tahun t = indeks waktu (tahun) http://rosihan.web.id

TERIMAKASIH Selamat Belajar http://rosihan.web.id