Pemecahan Masalah dalam Pembelajaran Matematika di Sekolah Fadjar Shadiq, M.App.Sc PPPPTK Matematika & SEAMEO QITEP in Math Terima kasih kepada Panitia Semiloka Mapika dan Prof Subanar, Ph.D (Guru Besar Matematika di UGM dan Direktur SEAMEO QITEP in Math) yang telah memberi keempatan kepada pemakalah untuk bebagi pendapat mengenai Pemecahan Masalah di kelas. FJR: SemNas Mapika UPY
Disampaikan pada: Seminar Nasional Matematika dan Pendidikan Matematika (MAPIKA) TEMA: ‘Matematika, Bagian Hidup untuk Memecahkan Permasalahan Kehidupan.’ Universitas PGRI Yogyakarta 24 Mei 2014 Memang benar bahwa matematika bagian hidup kita dan dapat diterapkan konsep maupun teoremanya untuk memecahkan permasalahan kehidupan FJR: SemNas Mapika UPY
Identitas Diri Fadjar Shadiq, M.App.Sc Tempat\Tanggal Lahir: Sumenep, 20-4-55 Pendidikan: Unesa dan Curtin University of Technology, Perth, WA Pengalaman Kerja: Guru SMA, Instruktur PKG Matematika, WI P4TK Matematika dan Deputy Director for Admin SEAMEO QITEP in Math fadjar_p3g@yahoo.com & www.fadjarp3g.wordpress.com Telepon: (0274)880762 atau 08156896973 FJR: SemNas Mapika UPY
Al Quran al Karim: “Rakyat Indonesia harus merubah nasibnya sendiri.” Sayyidina Ali bin Abi Thalib: “Didiklah anakmu sesuai dengan zamannya. Sungguh mereka akan menghadapi masa yang berbeda dari masamu.” Apa kekurangan pembelajaran selama ini? Bagaimana mengubahnya? Apa yang harus diubah? Bagaimana caranya? Lebih baik untuk mencari lilin daripada hanya mengeluh tentang kegelapan. FJR: SemNas Mapika UPY
(NRC, 1989:1) “Communication has created a world economy in which working smarter is more important than merely working harder. ... require worker who are mentally fit – workers who are prepared to absorb new ideas, to adapt to change, to cope with ambiguity, to perceive patterns, and to solve unconventional problems.” Menunjukkan pentingnya kemampuan berpikir. FJR: SemNas Mapika UPY
Setiap Orang Akan Menghadapi Masalah. Apa 2 Masalah Besar Bangsa Kita Setiap Orang Akan Menghadapi Masalah. Apa 2 Masalah Besar Bangsa Kita? Bagaimana Pendidikan Memberi Solusi? FJR: SemNas Mapika UPY Setiap orang, siapapun dia, akan selalu menghadapi masalah. Dua masalah besar bangsa kita berkait dengan: (1) Masalah karakter dan (2) Masalah keterampilan berpikir. Yang akan dibahas apa masalah itu dan bagaimana konsep pendidikan matematika memberi solusi menghadapi hal tersebut.
Mathematics in Context (Prof. Toh Tim Lam, Singapura) All mathematics concepts are motivated from real-world problems… . FJR: SemNas Mapika UPY
6 hijau dan 7 oranye atau 7 hijau dan 6 oranye Terus terang saja, ini hasil karya orang lain. Pertanyaan: Kenapa mereka dapat menghasilkan sesuatu, bukan bangsa kita yang menghasilkan? FJR: SemNas Mapika UPY Source: Jacobs 6 hijau dan 7 oranye atau 7 hijau dan 6 oranye
Bermain-Main Dengan Bilangan Tulis bilangan I yang terdiri atas tiga angka; dengan syarat angka ratusan harus paling tidak dua lebihnya dari angka satuan (mis 724) Tukar angka ratusan dengan angka satuan. Nyatakan itu sebagai bilangan II (427) Bilangan I dikurangi bilangan II (724–427 = 297) Tukar lagi angka ratusan dengan angka satuan Pert: Kenapa mereka dapat menghasilkan sesuatu, bukan bangsa kita yang menghasilkan? Kebetulan hasilnya begitu atau bisa dibuktikan? Bagaimana membuktikannya? Dengan memisalkan bilangan I adalah abc = 100a + 10b + c dengan a – c > 1. Sehingga bilangan II menjadi cba = 100c + 10b + a dengan a – c > 1. Akibat selanjutnya abc – cba dan seterusnya. Jumlahkan kedua bilangan tersebut (297+792) Berapa hasilnya? 1089 ya? Mengapa? FJR: SemNas Mapika UPY. Source: Jacobs
Bruner: Discovery Learning is Learning to Discover Pythagoras Komentar Bapak/Ibu? Matematika Dapat Muncul dari Main-Main, dan Penyelidi-kan. Problem Solving Dia senang mengerjakan matematika amati mukanya. Guru matematika harus menjadi contoh seperti Pythagoras. Jika Bruner menyatakan bahwa ‘Discovery Learning is Learning to Discover’ maka ‘Problem Solving is Learning to solve the problem.’ Setiap guru matematika harus bermimpi untuk menjadikan setiap siswanya menjadi penyelidik dan pengeksplor. FJR: SemNas Mapika UPY. Source NCTM
Faktanya: Matematika sangat penting namun banyak siswa yang tidak menyukainya. Bagaimana masa depan anak tersebut? Even dan Ball (2009:1): “ ... teachers are key to students’ opportunities to learn mathematics.” The next generation is also depend on us, mathematics educator. FJR: SemNas Mapika UPY
Pembelajaran seharusnya: menarik, menantang, dan siswa merasa aman. Source: Yeap Ben Har Anak ini senang belajar matematika (joyfully) ditentukan guru. U PGRI Yogyakarta harus menghasilkan guru yang mampu membantu siswanya untuk belajar matematika dalam suasana yang menyenangkan (joyful). Ada apa dengan anak laki-laki ini? Bagaimana jika ia tidak suka Matematika? Perlunya guru belajar dari kesulitan dan kesalahan siswa Bagaimana pembelajaran yang menyenangkan? FJR: SemNas Mapika UPY
Tantangan Eksternal Menurut K13 Kompetensi Masa Depan Kemampuan berkomunikasi Kemampuan berpikir jernih dan kritis Kemampuan mempertimbangkan segi moral suatu permasalahan Kemampuan menjadi warga negara yang bertanggungjawab Kemampuan mencoba untuk mengerti dan toleran terhadap pandangan yang berbeda Kemampuan hidup dalam masyarakat yang mengglobal Memiliki minat luas dalam kehidupan Memiliki kesiapan untuk bekerja Memiliki kecerdasan sesuai dengan bakat/minatnya Memiliki rasa tanggungjawab terhadap lingkungan FJR: SemNas Mapika UPY
‘Principles and Standards for School Mathematics’ (NCTM): Standar Matematika Sekolah: Standar isi materi (mathematical content) Standar proses (mathematical processes) Pemecahan masalah (problem solving), Penalaran dan pembuktian (reasoning and proof), Keterkaitan (connections), Komunikasi (communication), dan Representasi (representation). FJR: SemNas Mapika UPY
Standar Kompetensi Lulusan (K13) Memiliki perilaku yang mencerminkan sikap: Orang yang beriman, berakhlak mulia, percaya diri, dan bertanggung jawab dalam berinteraksi secara efektif dengan lingkungan sosial dan alam. Serta dalam menempatkan dirinya sebagai cerminan bangsa dalam pergaulan dunia. SIKAP/ KI 1-2 Memiliki kemampuan pikir dan tindak yang efektif dan kreatif dalam ranah abstrak dan konkret. Terkait dengan pengembangan dari yang dipelajarinya di sekolah sesuai dengan bakat, minat, dan kemampuannya. KETE-RAMPILAN. KI-4 Memiliki pengetahuan prosedural dan metakognitif ilmupengetahuan, teknologi, seni, budaya, humaniora, dengan wawasan kebangsaan, kenegaraan, dan peradaban. Terkait penyebab fenomena dan kejadian yang tampak mata yang mencakup penyebab, alternatif solusi, kendala dan solusi akhir. PENGE- TAHUAN KI-3 FJR: SemNas Mapika UPY
Bagaimana Pembelajarannya? Descartes Source: Masami Isoda Komentar Bapak/Ibu? Apa yang dilakukan sang Guru (Descartes) & Muridnya? Descartes (berbaju merah) nampak hanya mengajukan pertanyaan. Yang lain (muridnya) sibuk berdiskusi dan tertarik untuk memecahkan masalah yang dikemukakan Descartes. FJR: SemNas Mapika UPY
Penyempurnaan Pola Pikir (K13) Berpusat pada Guru Berpusat pada Siswa 2 Satu Arah Interaktif 3 Isolasi Lingkungan Jejaring 4 Pasif Aktif-Menyelidiki 5 Maya/Abstrak Konteks Dunia Nyata 6 Pribadi Pembelajaran Berbasis Tim 7 Luas (semua materi diajarkan) Perilaku Khas Memberdayakan Kaidah Keterikatan 8 Stimulasi Rasa Tunggal (beberapa panca indera) Stimulasi ke Segala Penjuru (semua Panca indera) 9 Alat Tunggal (papan T) Alat Multimedia 10 Hubungan Satu Arah Kooperatif Menuju FJR: SemNas Mapika UPY
Matematika Kurikulum Lama Kurikulum 2013 Langsung masuk ke materi abstrak Mulai dari pengamatan permasalahan konkret, kemudian ke semi konkret, dan akhirnya abstraksi permasalahan 2 Banyak rumus yang harus dihafal untuk menyelesaikan permasalahan (hanya bisa menggunakan) Rumus diturunkan oleh siswa dan permasalahan yang diajukan harus dapat dikerjakan siswa hanya dengan rumus-rumus dan pengertian dasar (tidak hanya bisa menggunakan tetapi juga memahami asal-usulnya) 3 Permasalahan matematika selalu diasosiasikan dengan [direduksi menjadi] angka Perimbangan antara matematika dengan angka dan tanpa angka [gambar, grafik, pola, dsb] 4 Tidak membiasakan siswa untuk berfikir kritis [hanya mekanistis] Dirancang supaya siswa harus berfikir kritis untuk menyelesaikan permasalahan yang diajukan 5 Metode penyelesaian masalah yang tidak terstruktur Membiasakan siswa berfikir algoritmis 6 Data dan statistik dikenalkan di kelas IX saja Memperluas materi mencakup peluang, pengolahan data, dan statistik sejak kelas VII serta materi lain sesuai dengan standar internasional 7 Matematika adalah eksak Mengenalkan konsep pendekatan dan perkiraan FJR: SemNas Mapika UPY
Belajar Bermakna? Bilangan mana yang paling mudah diingat? Mengapa? Bagaimana dengan pembelajaran di kelas? 31.157.132 31.117.532 The third number is the easiest to remember because the third number relates to the first six prime numbers (2, 3, 5, 7, 11, 13). The second number is the third number in reverse order. 23.571.113 FJR: SemNas Mapika UPY
Pentingnya Belajar Bermakna Bilangan (23.571.113) dan (31.117.532) bermakna hanya jika dikaitkan dengan 6 bilangan prima pertama (2, 3, 5, 7, 11, 13) yang sudah dipelajari. Siswa difasilitasi guru sehingga dapat mengaitkan pengetahuan baru dengan pengetahuan lama. Faktor yang paling menentukan pada proses pembelajaran adalah apa yang sudah diketahui siswa. Ausubel has said that the most important single factor influencing learning is what student already know. NCTM states that students should actively building new knowledge based on the previous knowledge known to students. FJR: SemNas Mapika UPY
Pentingnya Pengetahuan Prasyarat. Guru sebagai Fasilitator. Siswa harus mengkonstruksi pengetahuan berdasar pengetahuan yang sudah ia miliki. Belajar Bermakna (Meaningful Learning) Ausubel Learning with Understanding NCTM Constructivism Jadi, salah satu faktor yang dapat menentukan keberhasilan pembelajaran adalah hal yang diketahui siswa. Pentingnya Pengetahuan Prasyarat. Guru sebagai Fasilitator. FJR: SemNas Mapika UPY
Cara GAUSS Muda menentukan hasil dari: 1 + 2 + 3 + - - - + 98 + 99 + 100 ? 101 101 Hal di atas menunjukkan kehebatan Gauss. Ia merupakan salah satu dari 5 matematikawan terbaik. Alangkah indahnya yang dilakukan Gauss kecil. Pada intinya, belajar matematika adalah untuk memudahkan kita, dan bukan untuk mempersulit. FJR: SemNas Mapika UPY Jadi, hasilnya: 50x101 Pentingnya Kemampuan Berpikir, Bernalar dan Berinovasi. Belajar Matematika untuk Memudahkan, bukan Mempersulit.
PENALARAN Suatu kegiatan berpikir untuk menarik kesimpulan atau membuat suatu pernyataan baru berdasar pada beberapa pernyataan yang kebenarannya telah dibuktikan atau diasumsikan benar. FJR: SemNas Mapika UPY
Induksi - Deduksi 5+3 = 3+5 a+b = b+a 2 p l Induksi - Deduksi 30 x 5+3 = 3+5 a+b = b+a Mana yang lebih mudah diterima kita dan siswa, Luas = 3.2 atau Luas = p.l ? FJR: SemNas Mapika UPY
Eksplorasi Pola ke-1 Pola ke-2 Pola ke-3 Once again, do not focus on the answer only; but focus on how to help our students to learn meaningfully, how to help them to think and how to help them to be an independent learner? Pada Pola ke-10, banyak BKA = (1+2+3+ … + 10)3 = 55.3 = 165. Pada Pola ke-100, banyak BKA = (1+2+3+ … +100)3 = 5050.3 = 15.150. Pada Pola ke-n, banyak BKA = (1+2+3+ … +n)3 = (n)(n+1).3/2, Pola ke-1 membutuhkan 3 Batang Korek Api. Berapa BKA pada pola ke-4, pola ke-10, ke-100 dan ke-n? FJR: SemNas Mapika UPY
Berapa kubus pada pola ke-4, ke-10, ke-100, dan ke-n? Eksplorasi Pola ke-1 Pola ke-2 Pola ke-3 Once again, do not focus on the answer only; but focus on how to help our students to learn meaningfully, how to help them to think and how to help them to be an independent learner? Pada pola ke-4, banyak kubus = 4 + 4(1+2+3) = 28. Pada pola ke-10, banyak kubus = 10 + 4(1+2+3+ … +9) = 10 + 4.45 = 190 Pada pola ke-100, banyak kubus = 100 + 4(1+2+3+ … +99) = 100 + 4.4750 = 100 + 18.000 = 18.100 Pada pola ke-n, banyak kubus = n + 4(1+2+3+ … +(n-1)) = n + 4.(n-1)(n)/2 = n + 2(n)(n – 1) = n(1 + 2n – 2) = (n)(2n – 1) Berapa kubus pada pola ke-4, ke-10, ke-100, dan ke-n? FJR: SemNas Mapika UPY
Deduktif - Induktif 5+3 = 3+5 a+b = b+a Deduktif: aksioma, definisi, teorema. Induktif: kasus khusus, generalisasi. Deduktif - Induktif George Polya (1973: VII): “Yes, mathematics has two faces; it is the rigorous science of Euclid but it is also something else. Mathematics presented in the Euclidean way appears as a systematic, deductive science; but mathematics in the making appears as an experimental, inductive science.” FJR: SemNas Mapika UPY
GIERE: Kelebihan induksi adalah dengan didapatkannya suatu pernyataan baru yang bersifat umum (general) yang melebihi kasus-kasus khususnya (knowledge expanding). Kelebihan deduksi yang valid atau sahih, kesimpulan yang didapat dinyatakan tidak akan pernah salah jika premis-premisnya bernilai benar (truth preserving). Di samping itu, berdasar pengalaman, induksi jauh lebih nudah diterima dari deduksi. Karena itu pembelajaran matematika di kelas sebaiknya dari induksi deduksi. Karena menurut teorinya, pembelajaran matematika sebaiknya dimulai dari yang mudah (induksi) di mana dapat dibicarakan kasus-kasus khususnya baru dibuktikan secara deduktif. FJR: SemNas Mapika UPY
Mana yang merupakan masalah? Mengapa? Perlunya sikap pantang menyerah. PEMECAHAN MASALAH Hitung 54321 4 Ganti setiap huruf dengan angka, huruf yang sama harus diganti dengan angka yang sama, sehingga didapat perkalian yang benar pada SIMAK 4 = KAMIS Untuk memecahkan masalah SIMAK 4 = KAMIS, penulis membutuhkan 1,5 bulan untuk menyelesaikannya, sehingga diperlukan sikap pantang menyerah dalam memecahkan suatu masalah. Prosesnya adalah sbb: S harus berupa bilangan genap (mengapa?) S = 0, 2, 4, 6 atau 8. Yang mungkin, S = 2. K = 3 atau 8. Yang mungkin, K = 8. I harus ganjil. I = 1, 3, 5, 7 atau 9. Yang mungkin, I = 1. Berikutnya, A = 2 atau 7. Yang mungkin A = 7. Dengan mencoba-coba, didapat M = 9. Jadi, 21978 4 = 87912 merupakan pemecahannya. Mana yang merupakan masalah? Mengapa? Perlunya sikap pantang menyerah. FJR: SemNas Mapika UPY
DEFINISI MASALAH Cooney, et al DEFINISI MASALAH Cooney, et al. (1975: 242): “… for a question to be a problem, it must present a challenge that cannot be resolved by some routine procedure known to the student.” Dapat terjadi, suatu soal menjadi ‘masalah’ bagi seseorang akan tetapi soal yang sama tersebut bisa menjadi ‘soal’ biasa bagi orang lain hanya karena orang lain tersebut sudah mengetahui langkah-langkah penyelesaian soal tersebut. FJR: SemNas Mapika UPY
PENTINGNYA Pemecahan Masalah “Everyone knows that it is easy to do a puzzle if someone has told you the answer. That is simply a test of memory. You can claim to be a mathematician only if you can solve puzzles that you have never studied before. That is the test of reasoning.” W.W. Sawyer -Mathematician’s Delight, Belajar Pemecahan Masalah di Kelas Untuk Diaplikasikan di dalam kehidupan nyata. FJR: SemNas Mapika UPY
PROSES PEMECAHAN MASALAH (G PROSES PEMECAHAN MASALAH (G. POLYA) Memahami Masalahnya Merencanakan Melaksanakan Rencana Menafsirkan Hasilnya FJR: SemNas Mapika UPY
Bagaimana menentukan luas dimaksud? Jawaban Jamak. Tentukan luas daerah yang diarsir pada 2 persegi ini? (Soal IMSO di Jakarta) Jawaban Tunggal. L 20cm 40cm A B C D E F H K Bagaimana menentukan luas dimaksud? Jawaban Jamak. Luas daerah yang diarsir adalah 400 meter persegi. Cara 1, Luas 2 persegi – luas 3 segitiga. Cara 2, Luas trapesium AEFK – luas segitiga AEF. Cara 3. Luas segitiga AFK. Cara 4, Luas AEFL – (luas dua segitiga). Cara 5, luas AFL – luas AKL Pertanyaan Terbuka Pentingnya Kreativitas & Inovasi. FJR: SemNas Mapika UPY
5 – (–2) = …. BAGAIMANA PEMBELAJARAN DI KELAS? Berapa Hasilnya? Mengapa? Agar siswa hafal atau paham? Apa siswa difasilitasi untuk belajar berpikir? Bagaimana sebaiknya pembelajarannya? FJR: SemNas Mapika UPY
Apa jawabnya? Apa yang Menarik? 5 – 2 = … 5 – 1 = … 5 – 0 = … 5 – 5 = … 5 – 4 = … 5 – 3 = … Dimulai dengan masalah atau kegiatan (activity). Siswa lalu diminta menyelidiki (bereksplorasi). Apa keuntungan pembelajaran seperti itu? Perintah/pertanyaan: “Apa yang Menarik pada Data berikut?” Dapat diubah menjadi: “Apa yang akan Anda lakukan jika diberi Data seperti ini?” Dengan demikian siswa difasilitasi untuk berpikir dan bernalar (menarik kesimpulan sendiri) serta siswa difasilitasi untuk paham karena pembelajaran dimulai dari pengurangan dua bilangan positif yang sudah dipelajari siswa. Siswa tidak diberikan dengan ilmu yang sudah jadi, akan tetapi mereka difasilitasi untuk menemukan sendiri dengan fasilitasi guru berdasar pengetahuan yang sudah dipelajari siswa.. Apa yang akan dilakukan guru jika siswanya tidak mampu untuk menemukan sendiri dengan fasilitasi guru maka guru hendaknya membimbing siswa dengan pertanyaan seperti: “Bagaimana dengan hasilnya?’ Jawaban yang diharapkan: “Hasilnya naik satu-satu.” ‘Mengapa demikian?” Jawaban yang diharapkan: “Karena pengurangnya berkurang satu-satu.” atau “Karena pengurangnya makin kecil.” Sekali lagi, kemampuan berpikir semakin dibutuhkan, sehingga proses pembelajaran di kelas harus berbeda dari sebelumnya. Guru harus bertindak sebagai fasilitator dan bukan pembagi pengetahuan (bukan transfer of knowledge.) Bagaimana jika tidak ada siswa yang menjawab? Dapatkah Pertanyaan itu diubah? Mengapa? FJR: SemNas Mapika UPY
Memulai dengan ‘Masalah’ Bagaimana menentukan luas Belah Ketupat ini?
Mengapa sin 30 = 1/2? Bagaimana pembelajarannya di kelas? Pemecahan masalah menjadi fokus pembelajaran Dapat dimulai dengan siswa diminta mencoba-coba. A B C D x ? Bagaimana membuktikannya secara deduktif? Pembelajarannya bisa dengan meminta siswa untuk membuat segitiga siku-siku dan dengan sudut 30 derajat. Apa yang didapat? Pembuktian secara deduktif dapat dilakukan dengan membuat lingkaran pada segitiga dimaksud. Segitiga BCD adalah segitiga sama-sisi (mengapa?). Jika CD = x maka AC = …. 90° ? 30° ? ? FJR: SemNas Mapika UPY
Belajar dari Video Apa saja persamaan dan perbedaan proses pembelajarannya? Bagaimana guru di Jepang memfasilitasi siswanya untuk belajar secara bermakna dan memfasilitasi siswanya untuk belajar berpikir, bernalar, dan berkomunikasi? Komentar? Start FJR: SemNas Mapika UPY
What Are the Differences and Similarities Between Japanese and Indonesian Students? FJR: SemNas Mapika UPY
“The Aims of T&L of Math in Japan.“ to help pupils acquire basic and fundamental knowledge and skills regarding numbers, quantities and geometrical figures, to foster their ability to think and express with good perspective and logically on matters of everyday life, to help pupils find pleasure in mathematical activities and appreciate the value of mathematical approaches, and to foster an attitude to willingly make use of mathematics in their daily lives as well as in their learning. Source: Shizumi FJR: SemNas Mapika UPY
What Are the Differences and Similarities Between Japanese and Indonesian Mathematics Classroom? FJR: SemNas Mapika UPY
What Are the Differences and Similarities Between Japanese and Indonesian Mathematics Classroom? FJR: SemNas Mapika UPY
Belajar Gradien (A) Perhatikan gambar berikut lalu jawab pertanyaan ini. Gradien atau ‘tingkat kemiringan.’ Menurut Anda, apakah gradien atau ‘tingkat kemiringan’ tiga garis itu berbeda ataukah sama? Mengapa? Faktor apa saja yang menyebabkan perbedaan itu? Jelaskan. Bagaimana menentukan gradien atau ‘tingkat kemiringan’ suatu garis? A B K L P Q M R Apa yang menarik pada pembelajaran di atas? Apa jawabnya? Apakah pertanyaan/kegiatan tersebut dapat diubah? Bagaimana mengubahnya? Mengapa harus diubah seperti itu? FJR: SemNas Mapika UPY
(B) How to Teach Median (N = 22)? Source: Shadiq (2011) Find a vertical line to divide the number of the data into two equal parts. 1 2 3 4 5 6 4,5 9,5 14,5 19,5 24,5 29,5 1+3+4=8 1+3=4 Need 3 more data to reach 11 or 1/2 n 1 To find a vertical line that divide the number of the data into two equal parts than the position of the red line must be at 14,5 + (3/6)5 Me = 14,5 + (1/2 n – Fkum)/Fmed x i. FJR: SemNas Mapika UPY
Masalah/Soal Luas Segitiga (1) Bagi ABC ini menjadi 5 segitiga yang luasnya sama menggunakan 4 garis BDEFG. AD : DC = 4 : 1 AE : EB = 3 : 1 AF : FD = 2 : 1 AG : GE = 1 : 1 FJR: SemNas Mapika UPY
Masalah Prof. MASAMI ISODA (2) Batang CD dihubungkan dengan batang AB di B dan AB=CB=BD. Jika kedudukan A adalah tetap dan D bergerak sepanjang garis datar, bagaimana dengan tempat kedudukan titik C? Perhatikan titik ekstrimnya, jika D berimpit dengan A atau D pada posisi paling kanan. Jika D berimpit dengan A maka CD akan tegak lurus pada garis Jika D pada posisi paling kanan maka posisi C akan berimpit dengan A. Jadi, pergerakan C berupa garis dari A ke C terus ke atas. Bagaimana membuktikannya secara deduktf? FJR: SemNas Mapika UPY
Masalah/Soal Geometri (3) Diketahui AB diameter lingkaran dan BC garis singgung yang menyinggung Ingkaran di titik B. Jika AB = 20 cm dan BC = 15 cm, maka CD = .... a. 9 b. 8 c. 7 d. 6 e. 5 A B C D Dengan menggunakan teorema Pythagors akan didapat AC = 25. Karena BD tegak lurus AC (mengapa?) sehingga ABC sebangun BDC. Didapat BC.BC = CD.AC CD = 9. FJR: SemNas Mapika UPY
Masalah/Soal Geometri (4) F adalah titik tengah sisi BC dari persegi ABCD. Jika luas segiempat CDEF adalah 45, maka luas segitiga BEF adalah .... a. 7,5 b. 9 c. 10,5 d. 12 e. 13,5 A B C D F E Segitiga BEF sebangun dengan DEA BE : DE = FE : AE = BF : DA = 1 : 2. Jika dimisalkan luas segitiga BEF =a, maka luas segitiga AED = 4a dan luas segitiga ABE = 2a karena alas segitiga ABE adalah 2 kali alas segitiga EBF. Luas segitiga ABD = 6a Luas segiempat CDEF = 5a = 45, sehingga a = 9. Jadi luas segitiga BEF adalah 9 satuan. G H FJR: SemNas Mapika UPY
Masalah/Soal Aljabar (5) Cari semua himpunan bilangan asli berurutan yang jumlahnya 1000. Sn = ½ n[2a + (n 1)b] 1000 = ½ n[2a + (n 1)1] n.a +n (n – 1)/2 =1000 n.a = 1000 n (n – 1)/2 a = 1000/n (n – 1)/2 --- (1). Misalkan n merupakan bilangan asli ganjil, sehingga (n 1) merupakan bilangan genap. Dengan demikian, bentuk akan merupakan bilangan asli. Perhatikan sekali lagi persamaan 1) di atas. Karena a merupakan bilangan asli dan n merupakan bilangan ganjil maka haruslah merupakan bilangan asli juga. Dengan demikian nilai n yang mungkin memenuhi adalah: n = 5 a = 198 sehingga himpunannya: {198, 199, 200, 201, 202} n = 25 a = 28 sehingga himpunannya: {28, 29, 30, 31, 322, ... , 52} n = 125 a = 54 (Tidak Memenuhi) Sekarang dimisalkan n merupakan bilangan asli genap sehingga (n 1) merupakan bilangan ganjil. Dengan demikian, bentuk akan merupakan bilangan cacah ditambah . Perhatikan sekali lagi persamaan 1) di atas. Agar a merupakan bilangan asli maka harus merupakan bilangan asli juga dan n merupakan bilangan genap. Dengan demikian nilai n yang mungkin memenuhi adalah: n = 16 a = 55 sehingga himpunannya: {55, 56, 57, ... , 70} n = 80 a = 27 (Tidak Memenuhi) Jadi hanya ada tiga himpunan penyelesaian masalah ini, yaitu: {198, 199, 200, 201, 202}dengan n = 5. {28, 29, 30, 31, 322, ... , 52} dengan n = 25. {55, 56, 57, ... , 70} dengan n = 16. FJR: SemNas Mapika UPY
Soal Logika (6/C) Salah seorang di antara Alfan, Bravo, Charlie, atau Deltawan mencuri uang Profesor Pythagoras. Sang Profesor mengetahui pencurinya. Meskipun demikian, asistennya diberi tugas untuk menemukan sang pencuri. Di depan sang professor dan asistennya, keempat anak menyatakan hal-hal berikut: Alfan: “Bukan saya pencurinya.” Bravo: “Alfan berbohong.” Charlie: “Bravo berbohong, Pak.” Deltawan: “Bravo pencurinya.” Profesor Pythagoras membisikkan pada asistennya bahwa hanya satu pernyataan saja yang benar dari empat pernyataan itu. Berdasar bisikan tersebut dan setelah berpikir agak lama, sang asisten dapat menentukan pencurinya dengan tepat. Tentukan pencuri tersebut. Mengapa? Jelaskan. Jika dimisalkan Bravo pencurinya, apa yang terjadi? Apa kesimpulannya? Jika dimisalkan Alfan pencurinya, maka hanya pernyataaan bravo yang benar, sesuai yang dibisikkan Profesor Pythagoras. Jadi, dapat disimpulkan bahwa Alfan pencurinya. FJR: SemNas Mapika UPY
STRATEGI PM Cara yang sering digunakan dan sering berhasil pada proses pemecahan masalah. Strategi PM dapat ditransfer ke dalam kehidupan sehari-hari. Harus dilatihkan (analogi pemain bola). FJR: SemNas Mapika UPY
BEBERAPA CONTOH STRATEGI PEMECAHAN MASALAH Mencoba-coba, membuat diagram, membuat tabel, menemukan pola, memecah tujuan, memperhitungkan setiap kemungkinan, berpikir logis, bergerak dari belakang, mengabaikan hal yang tidak mungkin, dan menyusun model matematikanya. FJR: SemNas Mapika UPY
Simpulan (1) 3 Pertanyaan Berkait Pembelajaran Bagaimana caranya agar pembelajaran Matematika bermakna bagi siswa? Bagaimana caranya agar pembelajaran Matematika menyenangkan bagi siswa? Bagaimana caranya agar pembelajaran Matematika membantu siswa belajar berpikir? Bagaimana caranya agar pembelajaran Matematika membantu siswa untuk mandiri? Bagaimana caranya agar pembelajaran Matematika bermakna bagi siswa? Pengetahuan baru harus berkait dengan pengetahuan lama. Bagaimana caranya agar pembelajaran Matematika menyenangkan bagi siswa? Menghindari yang monoton dan rutin dan dalam suasana yang tidak mencemaskan. Bagaimana caranya agar pembelajaran Matematika membantu siswa belajar berpikir? Pembelajaran agar fokus pada pemecahan masalah. Bagaimana caranya agar pembelajaran Matematika membantu siswa untuk mandiri? Memulai pembelajaran dengan masalah dan membantu siswa untuk bereksplorasi atau melakukan penyelidikan. FJR: SemNas Mapika UPY
2 Macam Masalah Dalam Pembelajaran Simpulan (2) 2 Macam Masalah Dalam Pembelajaran Di Awal Pembelajaran ide matematika dapat muncul dari masalah (kontekstual) tersebut. Setelah Pengetahuan Didapat menerapkan ide matematika tersebut untuk memecahkan masalah. FJR: SemNas Mapika UPY
Simpulan (3) Yang Dibutuhkan Selama PM Pengetahuan Strategi Pemecahan Masalah Kemampuan Berpikir Induksi (Analogi dan Generalisasi) serta Deduksi. Sikap Tidak Cepat Menyerah Belajar Berenang? Perlunya Siswa Berlatih Memecahkan Masalah Guru Sebagai Model/Teladan FJR: SemNas Mapika UPY
The End Terima Kasih