Oleh : Tim Hibah Pengajaran Mata Kuliah Teknologi Informasi Jurusan Matematika Pertemuan 4
Komputer menggunakan dan memanipulasi data untuk perhitungan aritmatik, pemrosesan data dan operasi logik. Data adalah bilangan biner dan informasi berkode biner yang dioperasikan untuk mencapai beberapa hasil perhitungan. Informasi biner disimpan dalam memori komputer atau register prosesor dan diinterpretasikan sebagai data atau informasi kontrol.
Data numerik Merepresentasikan integer dan pecahan fixed-point, bilangan real floating-point dan desimal berkode biner Data logikal Digunakan oleh operasi seperti OR, AND, COMPLEMENT, COMPARE dan SHIFT Data bit-tunggal Digunakan oleh operasi : SET, CLEAR, & TEST Data Alfanumerik Digunakan untuk manipulasi string oleh instruksi seperti MOVE dan SEARCH
Sistem Bilangan adalah suatu cara untuk mewakili besaran dari suatu item. Sistem bilangan yang sering digunakan manusia adalah sistem bilangan desimal, menggunakan 10 macam simbol. Sistem bilangan biner sering digunakan didunia komputer, karena sesuai untuk menyatakan dua keadaan ON atau OFF. Setiap sistem bilangan menggunakan suatu bilangan dasar atau basis (base atau radix).
Desimal dengan basis 10 (deca berarti 10) menggunakan 10 macam simbol Biner dengan basis 2 (binary) menggunakan 2 macam simbol bilangan Oktal dengan basis 8 (octal) menggunakan 8 macam simbol Heksadesimal dengan basis 16 (hexa = 6, deca = 10) menggunakan 16 macam simbol bilangan.
Simbolnya yaitu 0,1,2,3,4,5,6,7,8, dan 9 Bentuk nilai bilangan desimal dapat berupa integer desimal (decimal integer) dan pecahan desimal (decimal fraction) Integer desimal 8765 = 8x x x x10 0 Pecahan desimal 0,05 = 0x x10 -2
Menggunakan simbol 0 dan 1 Contoh : BinerDesimal
Bilangan biner dapat dinyatakan dalam bentuk jumlahan suku-suku basis berpangkat sesuatu. = 1x x x x2 0 = = 13
Mempunyai 8 macam simbol bilangan yaitu 0,1,2,3,4,5,6, dan 7 Contoh : = 1x x x x8 0 = 1x x64 + 1x8 + 3 =
Memori utama disebagian komputer diorganisasikan ke dalam satuan yang terdiri dari 8 bit, yang disebut byte. Masing-masing byte digunakan untuk menyimpan satu karakter. Satu byte bisa dipandang terdiri dari 2 group 4 bit. Masing-masing bagian 4 bit ini disebut nibble. 4 bit pertama disebut high-order nibble 4 bit kedua disebut low-order nibble.
Kelompok 4 bit memberikan sebanyak 16 kombinasi, sehingga dikenal bilangan heksadesimal. Menggunakan simbol 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, dan F
Bila suatu nilai dinyatakan dalam suatu sistem bilangan tertentu dan kita ingin mengetahui nilai tersebut dalam suatu bilangan lain, maka nilai tersebut harus dikonversikan terlebih dahulu ke sistem bilangan yang diinginkan. Disebut juga konversi antar basis, dari basis r ke basis t.
Metode sisa (the remainder method) Membagi bilangan yang akan dikonversikan dengan nilai 2 secara beruntun. Contoh : 22 : 2 = 11 sisa 0 11 : 2 = 5 sisa 1 5 : 2 = 2 sisa 1 2 : 2 = 1 sisa 0 1 : 2 = 0 sisa 1 Hasil konversi (ditulis dari bawah ) =
Dapat digunakan metode sisa dengan pembagi 8. Contoh : 246 246 : 8 = 30 sisa 6 30 : 8 = 3 sisa 6 3 : 8 = 0 sisa 3 Hasil konversi = 366 8
Dapat digunakan metode sisa, dengan pembagi 16 Contoh = 283 : 16 = 17 sisa 11 = B 17 : 16 = 1 sisa 1= 1 Hasil konversi = 11B 16
Dengan cara mengalikan masing-masing bit dalam bilangan biner tersebut dengan nilai posisinya. Contoh = = 1x x x x2 0 = = 11,01 2 = 1x x x x2 -2 = ,25 = 3,25 10
Dapat dilakukan dengan mengelompokan tiap 3 bit dalam bilangan biner tersebut dan menyatakan setiap kelompok tersebut dalam digit oktal. Pengelompokan dilakukan dari belakang. Contoh = = 1 5 6, hasil konversi 156 8
Dapat dilakukan dengan mengelompokan tiap 4 bit dalam bilangan biner tersebut dan menyatakan setiap kelompok tersebut dalam digit heksadesimal. Contoh = = 9 1, hasil konversi 91 16
Dengan cara mengalikan masing-masing bit dalam bilangan oktal tersebut dengan nilai posisinya. Contoh = = 4 x x x 8 0 = = 310 Hasil konversi
Dapat dilakukan dengan menyatakan masing-masing digit oktal dengan 3 bit biner yang ekivalen. Contoh = = Hasil konversi =
Dapat dilakukan dengan merubah bilangan oktal tersebut menjadi bilangan biner, kemudian merubah bilangan biner yang dihasilkan menjadi bilangan heksadesimal. Contoh = 2256 = (1) = 4 A E(2) Hasil konversinya = 4AE 16
Dengan cara mengalikan masing-masing bit dalam bilangan heksadesimal tersebut dengan nilai posisinya. Contoh = C13 16 C13 16 = 12 x x x 16 0 = = 3091 Hasil konversinya =
Dengan mengkonversikan masing-masing digit heksadesimal ke 4 digit biner. Contoh = F7 16 F 7 = Hasil konversi =
Dapat dilakukan dengan merubah bilangan heksadesimal tersebut menjadi bilangan biner terlebih dahulu, kemudian merubah bilangan biner yang dihasilkan menjadi bilangan oktal. Contoh = 22D 16 2 2 D = = Hasil konversinya =