Eni Sumarminingsih, S.Si, MM

Slides:



Advertisements
Presentasi serupa
STRUKTUR DISKRIT PROBABILITAS DISKRIT PROGRAM STUDI TEKNIK KOMPUTER
Advertisements

Statistika Industri Esti Widowati,S.Si.,M.P Semester Genap 2011/2012
MODUL 11 9 PELUANG BESYARAT
Peubah Acak.
TUGAS MEDIA PEMBELAJARAN
 P E L U A N G Faaizah Muh. Yusuf Nim
PELUANG Teori Peluang.
SALBATRIL Materi P E L U A N G Belajar Individu Oleh :
Oleh: Edi Satriyanto Peluang Oleh: Edi Satriyanto
PELUANG SUATU KEJADIAN
PELUANG Ruang Sampel dan Kejadian.
STATISTIKA Pertemuan 5 Oleh Ahmad ansar.
TEORI PROBABILITAS.
STATISTIKA Pertemuan 3 Oleh Ahmad ansar.
Fungsi Peluang dan Fungsi Sebaran Peubah Acak Diskret
Teori Peluang Oleh : Asep Ridwan Jurusan Teknik Industri FT UNTIRTA.
Media Pembelajaran Matematika
SOAL- SOAL LATIHAN DAN JAWABAN PELUANG.
PROBABILITA (PROBABILITY)
10. KOMBINATORIAL DAN PELUANG DISKRIT.
Tahun Pendapatan Nasional (milyar Rupiah) ,6 612,7 630, ,9 702,3 801,3 815,7 Probabilita adalah rasio.
PELUANG Alfika Fauzan Nabila Saadah Boediono Nur Fajriah Julianti Syukri Yoga Bhakti Utomo XI IPA 5.
Bab 2 PROBABILITAS.
PELUANG PERCOBAAN, RUANG SAMPEL DAN TITIK SAMPEL KEJADIAN
PRESENTED BY : TOTOK SUBAGYO, ST,MM. TINJAUAN UMUM.
PROBABILITAS (LANJUTAN)
KEJADIAN dan PELUANG SUATU KEJADIAN
PELUANG SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN SILIWANGI – MATEMATIKA 2014.
PELUANG Klik Tombol start untuk mulai belajar.
BAB 2 PROBABILITAS.
TEORI PROBABILITA Tita Talitha, MT.
BAB 2 PROBABILITAS.
KONSEP DASAR PROBABILITAS
Peluang suatu kejadian
D0124 Statistika Industri Pertemuan 7 dan 8
Peluang Kania Evita Dewi. Peluang Kania Evita Dewi.
Teori Peluang Statistik dan Probabilitas
Pengantar Teori Peluang Pertemuan ke-2 dan 3/7
Peluang suatu kejadian
STATISTIKA Jurusan PWK-FT-UB Pertemuan ke-4/2-4,14-16
PTP: Peubah Acak Pertemuan ke-4/7
Peluang
Pengantar Teori Peluang Pertemuan ke-2 dan 3/7
PROBABILITAS.
Aksioma Peluang.
Peluang Diskrit Achmad Arwan, S.Kom.
Peluang Diskrit.
5.
PELUANG Peluang Kejadian Frekuensi Harapan Peluang Komplemen Kejadian
Peluang Diskrit Achmad Arwan, S.Kom.
POLITEKNIK UNIVERSITAS ANDALAS
Dasar-dasar probabilita I
PELUANG Choirudin, M.Pd Klik Tombol start untuk mulai belajar.
MATAKULIAH MATEMATIKA [Pertemuan 2]
Peluang.
Assalamu’alaikum Wr. Wb.
PELUANG SUATU KEJADIAN
STATISTIKA DAN PROBABILITAS
PELUANG.
Peluang Diskrit Achmad Arwan, S.Kom.
PELUANG.
The Big Presentation of Kelompok 3  Gressya Yola Perbina T.  Maryati  Sukarno Setia Putra.
T. Yudi Hadiwandra, M.Kom WA: PROBABILITAS DAN STATISTIK Code : h87p4t
T. Yudi Hadiwandra, M.Kom WA: PROBABILITAS DAN STATISTIK Code : h87p4t
BAB 2 Peluang.
Ruang Contoh dan Kejadian Pengantar Teori Peluang
Pengantar Probabilitas
TEORI PROBABILITAS Disarikan dari : Adawiyah, Ariadi dan sumber lain yang relevan This template is provided by
KONSEP DASAR PROBABILITAS
Sifat – sifat probabilitas kejadian A
Transcript presentasi:

Eni Sumarminingsih, S.Si, MM Aksioma Peluang Eni Sumarminingsih, S.Si, MM

Notasi dan Terminologi Ruang Contoh : Himpunan semua kemungkinan hasil suatu percobaan dan dilambangkan dengan huruf S Contoh Perhatikan percobaan pelemparan sebuah dadu bersisi enam. Bila kita tertarik pada bilangan yang muncul, ruang contohnya adalah S1 = 1,2,3,4,5,6} Bila kita tertarik pada apakah bilangan yang muncul genap atau ganjil ruang contohnya adalah S2 = genap, ganjil Sebuah percobaan pelemparan dua koin dan pengamatan pada sisi mana yang muncul, ruang contohnya adalah S ={GG, GA, AG, AA}. Dimana G melambangkan yang muncul adalah Gambar sedangkan A melambangkan yang muncul adalah Angka

Kejadian : Suatu himpunan bagian dari ruang contoh Kejadian terambilnya kartu hati dari seperangkat (52 helai) kartu bridge dapat dinyatakan sebagai A = hati yang merupakan himpunan bagian dari ruang contoh S = hati, sekop, klaver, wajik. Kejadian B yaitu terambilnya kartu merah, B = hati, wajik Pada percobaan pelemparan 2 koin, E = {GG, GA} adalah kejadian bahwa pada koin pertama muncul Gambar. Sedangkan kejadian F = {GA, AA} adalah kejadian pada koin kedua muncul Angka

Kejadian Sederhana : adalah suatu kejadian yang dapat dinyatakan sebagai suatu himpunan yang hanya terdiri dari satu titik contoh. Kejadian majemuk : adalah suatu kejadian yang dapat dinyatakan sebagai gabungan dari beberapa kejadian sederhana

Contoh Pada contoh pelemparan dua koin dengan S ={GG, GA, AG, AA}, kejadian munculnya Gambar pada koin pertama dan Gambar pada koin kedua adalah kejadian sederhana yang dapat dilambangkan dengan A = {GG}. Kejadian munculnya Gambar pada koin pertama adalah kejadian majemuk yang dapat dilambangkan dengan B = {GG, GA}

Pengolahan Kejadian Irisan dua kejadian (AB) : adalah kejadian yang mengandung semua unsur persekutuan kejadian A dan kejadian B Gabungan dua kejadian (AB) : adalah kejadian yang mencakup semua unsur atau anggota A atau B atau keduanya Komplemen suatu kejadian (Ac) : adalah himpunan semua anggota S yang bukan anggota A

Contoh Misalkan A = 1,2,3,4,5 dan B = 2,4,6,8; maka AB = 2,4 Bila R adalah himpunan semua pembayar pajak dan S adalah himpunan semua orang yang berusia di atas 65 tahun, maka RS adalah himpunan semua pembayar pajak yang berusia di atas 65 tahun Jika A = 2,3,5,8 dan B = 3,6,8, maka AB = 2,3,5,6,8

Jika M = x|3<x<9 dan N = y|5<y<12, maka MN = z|3<z<12 Misalkan S = buku, anjing, rokok, uang logam, peta, perang. Jika A = anjing, perang, buku, rokok maka Ac = uang logam, peta Misalkan K adalah kejadian terambilnya kartu merah dari seperangkat kartu bridge dan S adalah ruang contohnya yang berupa seluruh kartu tersebut. Maka Kc adalah kejadian terambilnya kartu bukan merah, yang berarti juga terambilnya kartu hitam.

Dua kejadian A dan B dikatakan saling terpisah atau mutually exclusive bila AB = , artinya A dan B tidak mempunyai unsur persekutuan

Diagram Venn : Representasi secara grafis untuk mengilustrasikan logical relations di antara kejadian – kejadian

Diagram Venn Bagian yang diarsir : EF Bagian yang diarsir EF

E  F Bagian yang diarsir Ec

Hukum – hukum operasi dari gabungan, irisan dan komplemen Hukum komutatif : AB = BA, AB = BA Hukum Asosiatif : (AB) C = A(B C), (AB)C=A(BC) Hukum Distributif : (AB) C = (AC)  (BC), (AB) C = (AC)  (BC) Hukum De Morgan

Definisi Peluang dan Sifat – sifatnya Definisi dalam term frekuensi relatif dengan P(E) = peluang kejadian E n(E) = banyaknya kejadian E n = banyak percobaan

Definisi berdasar pendekatan aksiomatik modern Misalkan sebuah percobaan dengan ruang contoh S. Untuk setiap kejadian E dari ruang contoh S diasumsikan P(E) terdefinisi dan memenuhi tiga aksioma berikut : Aksioma 1 : 0  P(E)  1 Aksioma 2 : P(S) = 1

Aksioma 3 : Untuk barisan kejadian yang saling lepas (mutually eksklusive) E1, E2, …( yaitu kejadian kejadian dimana EiEj =  di mana i  j), dimana P(E) adalah peluang kejadian E

Contoh Dalam percobaan pelemparan koin, jika kita mengasumsikan bahwa peluang munculnya Gambar dan Angka sama besar, maka P({G}) = P({A}) = ½. Tetapi jika kita mengasumsikan bahwa koin tersebut tidak setimbang sehingga peluang munculnya Gambar adalah dua kali peluang muncul Angka, maka P({G}) = 2/3 dan P({A}) = 1/3 Jika sebuah dadu bermata 6 dilemparkan dan misalkan peluang munculnya tiap sisi adalah sama, maka P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1/6. Dari aksioma 3, kita akan dapat mengetahui peluang kejadian munculnya mata dadu genap adalah P({2,4,6}) = P({2}) + P({4}) + P({6}) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2

Proposisi yang berkaian dengan peluang P(Ec) = 1 – P(E) Proposisi 2 Jika E  F, maka P(E)  P(F) Proposisi 3 : P(EF)= P(E) + P(F) – P(EF)

Contoh Misalkan P = {a, i, u ,e ,o} dan R adalah {b, c, d, f, g}, maka PR = . P dan R adalah dua kejadian yang saling terpisah atau mutually exlusive. Pada percobaan pelemparan dadu bermata 6, A adalah kejadian munculnya mata dadu genap dan B adalah kejadian munculnya mata dadu 3. A dan B adalah dua kejadian yang mutually exclusive.

Proposisi 4 : P(E1E2…En) = + + …+(-1)n+1P(E1E2…En) Penjumlahan P(Ei1Ei2…Eir) diambil dari semua himpunan bagian berukuran r yang mungkin dari himpunan 1,2,…,n

Diasumsikan bahwa semua hasil dalam ruang contoh mempunyai peluang terjadi yang sama. Misalkan suatu percobaan dengan ruang contoh terbatas, S = 1,2,…,N, maka diasumsikan P1= P2=…= PN sehingga P(i) = 1/N dan P(E) = banyaknya titik dalam E/ banyaknya titik dalam S

Contoh Dalam pelemparan dua koin, ruang contohnya adalah {GG, GA, AG, AA}. Sehingga masing – masing titik contoh memiliki peluang ¼ untuk terjadi. Peluang terjadinya kejadian A yaitu munculnya Gambar pada koin pertama 2/4 karena kejadian A mengandung dua titik contoh. Dalam kejadian pelemparan dua dadu, terdapat 36 titik contoh dalam ruung contohnya sehingga masing – masing titik contoh mempunyai peluang 1/36 untuk terjadi. Kejadian C yaitu kejadian penjumlahan mata dadu yang keluar adalah tujuh mengandung 6 titik contoh yaitu (1,6), (2,5), (3,4), (4,3), (5,2) dan (6,1). Sehingga peluang kejadian C adalah 6/36 = 1/6.

Definisi berdasar term ukuran keyakinan: peluang merupakan ukuran keyakinan seseorang pada pernyataan yang dinyatakan olehnya Bersifat sangat subyektif dan dipengaruhi oleh pengetahuan dan pengalaman orang yang menyatakan peluang tersebut

Soal - soal 1. Sebuah koin dilempar tiga kali dan sisi apa yang muncul diamati (Gambar atau Angka) Daftarkan ruang contohnya. Daftarkan unsur yang menyusun kejadian A = kejadian muncul sedikitnya dua Gambar, kejadian B = kejadian muncul Gambar pada dua koin pertama dan C = kejadian muncul Angka pada pelemparan terakhir

2. Dari 5 orang laki – laki dan 4 orang perempuan akan dipilih 3 orang sebagai wakil dari suatu partai yang akan dikirim untuk menghadiri suatu konferensi. Berapa peluang yang terpilih adalah (a) ketiganya laki – laki (b) ketiganya perempuan dan (c) 1 laki – laki dan 2 perempuan