METODE KUANTITATIF : REGRESI BERGANDA

Slides:



Advertisements
Presentasi serupa
Evaluasi Model Regresi
Advertisements

ANALISIS REGRESI (REGRESSION ANALYSIS)
Bahan Kuliah Statistika Terapan
UJI HIPOTESIS.
ANALISIS REGRESI (REGRESSION ANALYSIS)
ANALISIS REGRESI DAN KORELASI LINIER
REGRESI LINIER BERGANDA
William J. Stevenson Operations Management 8 th edition REGRESIBERGANDA Rosihan Asmara
ANALISIS REGRESI DAN KORELASI
ANALISIS REGRESI DAN KORELASI
REGRESI LINIER SEDERHANA
BAB XI REGRESI LINEAR Regresi Linear.
ANAILSIS REGRESI BERGANDA
Operations Management
Erni Tri Astuti Sekolah Tinggi Ilmu Statistik
BAB III ANALISIS REGRESI.
UJI MODEL Pertemuan ke 14.
Regresi linier sederhana
Regresi linier sederhana
Aplikasi Program Analisis Data (SPSS)
Regresi linier sederhana
KORELASI DAN REGRESI LINEAR SEDERHANA
Misna Alisa A1A Faisal RahmanA1A Adirta RisandiA1A Muhammad ShodiqinA1A RusiyanaA1A
Analisis Data dengan SPSS
KORELASI & REGRESI.
Metode Statistika Pertemuan XIV
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
ANALISIS EKSPLORASI DATA
1 Pertemuan 25 Matakuliah: I0044 / Analisis Eksplorasi Data Tahun: 2007 Versi: V1 / R1 Analisis Regresi Ganda (I) : Pendugaan Model Regresi.
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Analisis Regresi. ANALISIS REGRESI Melihat ‘pengaruh’ variable bebas/independet variabel/ thd variable terikat/dependent variabel. Berdasarkan jumlah.
K O N S E P D A S A R A N A L I S I S R E G R E S I
Regresi Linear Dua Variabel
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
REGRESI LINIER SEDERHANA
Regresi & Korelasi Linier Sederhana
Dosen pengasuh: Moraida hasanah, S.Si.,M.Si
Presented by Kelompok 7 Mirah Midadan Richard Pasolang Reski Tasik
Analisis Korelasi dan Regresi linier
Operations Management
Korelasi dan Regresi Aria Gusti.
Pertemuan ke 14.
EKONOMETRIKA Pertemuan 4,5 Estimasi Parameter Model Regresi
ANALISIS REGRESI BERGANDA
Pertemuan ke 14.
ANALISIS REGRESI & KORELASI
PERAMALAN DENGAN GARIS REGRESI
Operations Management
Operations Management
ANALISA REGRESI LINEAR DAN BERGANDA
REGRESI DAN KORELASI What are regression & correlation analysis?
MUHAMMAD HAJARUL ASWAD
Pertemuan Kesembilan Analisa Data
Pertemuan Kesepuluh Data Analysis
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Analisis Regresi.
Disampaikan Pada Kuliah : Ekonometrika Terapan Jurusan Ekonomi Syariah
BAB 7 persamaan regresi dan koefisien korelasi
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Ekonomi Manajerial dalam Perekonomian Global
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Korelasi dan Regresi Aria Gusti.
Korelasi dan Regresi Aria Gusti.
ANALISIS REGRESI DAN KORELASI
Analisis Regresi Regresi Linear Sederhana
Transcript presentasi:

METODE KUANTITATIF : REGRESI BERGANDA 6 Fanny Widadie, S.P, M.Agr

Regression Regression analysis, in general sense, means the estimation or prediction of the unknown value of one variable from the known value of the other variable. If two variables are significantly correlated, and if there is some theoretical basis for doing so, it is possible to predict values of one variable from the other. This observation leads to a very important concept known as ‘Regression Analysis’. It is specially used in business and economics to study the relationship between two or more variables that are related causally and for the estimation of demand and supply graphs, cost functions, production and consumption functions and so on.

Thus, the general purpose of multiple regression is to learn more about the relationship between several independent or predictor variables and a dependent or output variable. Suppose that the Yield in a chemical process depends on Temperature and the Catalyst concentration, a multiple regression that describe this relationship is, Y = b0+b1*X1+b2*X2+ € → (a) Where Y = Yield. X1 = Temp:, X2 = Catalyst cont:. This is multiple linear regression model with 2 regressors. The term linear is used because equation (a) is a linear function of the unknown parameters bi’s.

Regression Models. Depending on nature of relationship regression models are two types. Linear regression model, including Simple-linear regression (one indep: var.) Multiple-linear regression. Non-Linear regression model, including Polynomial regression. Exponential regression ,etc.

Types of multiple regression There are three types of multiple regression, each of which is designed to answer a different question: Standard multiple regression is used to evaluate the relationships between a set of independent variables and a dependent variable. Hierarchical, or sequential, regression is used to examine the relationships between a set of independent variables and a dependent variable, after controlling for the effects of some other independent variables on the dependent variable. Stepwise, or statistical, regression is used to identify the subset of independent variables that has the strongest relationship to a dependent variable.

MODEL REGRESSI LINIER BERGANDA Model yg memperlihatkan hubungan antara satu variable terikat (dependent variable) dgn beberapa variabel bebas (independent variables). Yi = 0 + 1 X1i + 2 X2i + … + k Xki + i dimana: i = 1, 2, 3, …. N (banyaknya pengamatan) 0, 1, 2, …, k adalah parameter yang nilainya diduga melalui model: Yi = b0 + b1 X1i + b2 X2i + … + bk Xki

0 dan 1 : parameter dari fungsi yg nilainya akan diestimasi. Bersifat stochastik  untuk setiap nilai X terdapat suatu distribusi probabilitas seluruh nilai Y atau Nilai Y tidak dapat diprediksi secara pasti karena ada faktor stochastik i yang memberikan sifat acak pada Y. Adanaya variabel i disababkan karena:  Ketidak-lengkapan teori  Perilaku manusia yang bersifat random  Ketidak-sempurnaan spesifikasi model  Kesalahan dalam agregasi  Kesalahan dalam pengukuran

Yi = b1 + b2 X2i + b3 X3i + … + bk Xki Koefisien Regresi Partial (Partial Coefficient of Regression) Sampel : Yi = b1 + b2 X2i + b3 X3i + … + bk Xki Yi = b1.23 + b12.3 X2i + b13.2 X3i + … + bk Xki b1.23 = intercept, titik potong antara garis regresi dengan sumbu tegak Y Nilai perkiraan rata-rata Y kalau X2 = X3 = 0 b12.3 = Besarnya pengaruh X2 terhadap Y kalau X2 tetap

Yi = b1.234 + b12.34 X2i + b13.24 X3i + b14.23 X4 Misalnya: Yi = Hasil penjualan (perkiraan atau ramalan) X2 = Biaya advertensi X3 = Pendapatan X4 = Harga, atau Yi = Produksi Padi (perkiraan atau ramalan) X2 = Pupuk X3 = Bibit X4 = Luas Sawah

. . . . . Yi = 0 + 1 Xi + i i X Y X1 X2 X3 E(Yi) = 0 + 1 Xi X Y . . . . Ÿi = b0 + b1 Xi Yi Ÿi i X Y Yi = 0 + 1 Xi + i Variation in Y Systematic Variation Random Variation X1 X2 X3 E(Yi) = 0 + 1 Xi X Y Yi = 0 + 1 Xi + i Nilai rata2 Yi : E(Yi) = 0 + 1 Xi I = Yi - E(Yi)

Model Regresi Linier Berganda Asumsi-asumsi Model Regresi Linier Berganda (Agar hasil estimasi dapat diinterpretasikan dengan baik - BLUE) Nilai rata-rata disturbance term adalah nol, E(i) = 0. Tidak tdpt serial korelasi (otokorelasi) antar i Cov(i,j) = 0 untuk i  j. Sifat homoskedastisitas: Var(i) = 2 sama utk setiap i  Kesalahan Pengganggu Mempunyai Varian Sama Covariance antara i dan setiap var bebas adalah nol. Cov(i,Xi) = 0 Tidak tdpt multikollinieritas antar variebel bebas. Model dispesifikasi dengan baik

Interpretasi Persamaan Regresi Berganda Yi = b1.23 + b12.3 X2i + b13.2 X3i +  E (Yi /X2,X3) = b1.23 + b12.3 X2i + b13.2 X3i b13.2 mengukur besarnya perubahan Y kalau X3 Berubah sebesar satu satuan, dimana X2 konstan Yi ei ui X Xi Y SRF PRF ^

Metode Ordinary Least Squares (OLS) Estimasi Koefisien Regresi Parsial Metode Ordinary Least Squares (OLS) Prinsip: Meminimumkan nilai error – mencari jumlah penyimpangan kuadrat (i2) terkecil. i = Yi - 0 - 1 Xi i2 = (Yi - 0 - 1 Xi)2 i2 =  (Yi - 0 - 1 Xi)2 i2 minimum jika: i2 /0 = 0  2 (Yi - 0 - 1 Xi) = 0 i2 /1 = 0  2  Xi (Yi - 0 - 1 Xi) = 0

Sederhanakan, maka didapat:  (Xi – X) (Yi – Y) b1 =  (Xi – X)2 b0 = Y - b1X dimana b0 dan b1 nilai penduga untuk 0 dan 1. X dan Y adlh nilai rata2 pengamatan X dan Y

REGRESSI LINIER BERGANDA Model: Yi = 0 + 1 X1i + 2 X2i + i ESTIMASI MODEL REGRESSI LINIER BERGANDA Model: Yi = 0 + 1 X1i + 2 X2i + i Model penduga: Ŷi = b0 + b1 X1i + b2 X2i b0, b1 dan b2 nilai penduga untuk 0, 1 dan 2. (yi x1i) (x22i ) – (yi x2i) (x1i x2i) b1 = (x21i ) (x22i ) – (x1i x2i)2 (yi x2i) (x21i ) – (yi x1i) (x1i x2i) b2 = (x21i ) (x22i ) – (x1i x2i)2 b0 = Yi – b1X1i – b2 X2i

Standard error of the estimates Var(2) = 2 /  Xi2 2  Se(2) = Var(2) = =  Xi2  Xi2  Xi2 Var(1) = 2 n  xi2 Se(1) = Var(1) = 2  i2 2 =  i2 =  yi2 – 22  xi2 n – 2  (xi yi) 2 =  yi2 –  xi2

i2 = y2i – b1 yi x1i – b2 yi x2i ESTIMASI MODEL REGRESSI LINIER BERGANDA 1 X21 x22i – X22 x21i – 2 X1 X2 x1i x2i var(b0) = + 2 n (x21i ) (x22i ) – (x1i x2i)2 x21i var(b1)= (x21i )(x22i ) – (x1i x2i)2 se(bi) = var(bi) Utk i = 0, 1, 2. 2 x21i var(b1)= (x21i )(x22i ) – (x1i x2i)2 2 i2 2 = n – 3 i2 = y2i – b1 yi x1i – b2 yi x2i

Koefisien Determinasi 1 + 2 Xi Y • RSS TSS TSS = RSS + ESS ESS RSS 1 = + TSS TSS  (Ŷi - Y)2  i2 = +  (Yi - Y)2  (Yi - Y)2 ESS Y X ESS  (Ŷi - Y)2 r2 = = TSS  (Yi - Y)2 atau ESS  i2 = 1 – = 1 – TSS  (Yi - Y)2 Atau:  xi2 r2 = 22  yi2  (xi yi) 2 =  xi2  yi2

Koefisien Korelasi

A NUMERICAL EXAMPLE

ILLUSTRATIVE EXAMPLES

REGRESI LINEAR BERGANDA Y = ß0 + ß1 X + ß2 X + …. + ßn Xn Dalam konsep dasarnya pengujian statistik SECARA PARSIAL mendasarkan pada hipotesis : Uji Konstanta Intersep H0 : ß0 = 0 H1 : ß0 ≠ 0 Uji Koeff. Xi H0 : ßi = 0 H1 : ßi ≠ 0

Contoh : Tujuan untuk mengetahui pengaruh (kontribusi) proses/ mekanisme yang disusun dalam praktikum terhadap pencapaian nilai ujian akhir praktikum, yaitu melalui penilaian atas latihan di kelas dan penilaian atas laporan praktikum. Dengan demikian dapat dibuat spesifikasi modelnya sebagai berikut : Y = ß0 + ß1X1 + ß2X2 --------------------- (model 1) Dimana : Y : Nilai ujian akhir X1 : Nilai pretest X2 : Nilai Laporan

Interpretasi Hasil : Pengujian untuk intersep : H0 : ß0 = 0 Dari hasil di atas selanjutnya dapat disusun persamaan berikut : N_Akhir = -25.450 + 0.542 Latihan + 0.771 Laporan R2 = 0.702 SE (9.351) (0.089) (0.132) T-Hit. 2.722 6.067 5.828 F-hit = 73,02 Df = 62 Pengujian statistik baik uji keseluruhan (Uji-F) dan uji koefisien variabel dalam model (Uji-t) memiliki kesamaan dengan analisis regresi linear sederhana. Hipotesis uji-F adalah : H0 : ß0 = ß1 = ß2 = 0 H1 : ß0, ß1, ß2 ≠ 0 Sedangkan uji koefisien atau pengujian secara parsial memiliki hipotesis sebagai berikut : Pengujian untuk intersep : H0 : ß0 = 0 H1 : ß0 ≠ 0 Pengujian untuk ß1 : H0 : ß1 = 0 H1 : ß1 ≠ 0 Pengujian untuk ß2 : H0 : ß2 = 0 H1 : ß2 ≠ 0

Hasil analisis di atas menunjukkan bahwa model secara statistik adalah memang dapat digunakan, terbukti dari nilai F-hit sebesar 73.02 yang signifikan pada tingkat alpha 5% atau 0.05 Artinya bahwa ß0, ß1, ß2 mempengaruhi secara nyata terhadap N_Akhir (nilai Akhir). Kekuatan pengaruh dari kedua variabel dalam menjelaskan variabel N_Akhir sebesar 70.2 % sedangkan sisanya yaitu sekitar 29.8% merupakan pengaruh dari variabel lain yang tidak dipertimbangkan dalam model.

Koefisien latihan 0.542 dapat diartikan jika Nilai Laporan tetap maka kenaikan 1 satuan nilai latihan akan cenderung menaikkan nilai ujian sebesar 0.542. Demikian juga untuk pengaruh nilai Laporan. Jika nilai laporan naik 1 satuan maka akan cenderung meningkatkan nilai ujian Akhir sebesar 0.771. Hal yang lebih menarik sebenarnya adalah faktor apa yang tersembunyi di balik angka-angka tersebut. Hal ini memerlukan informasi yang bersifat kualitatif untuk mengungkap :