Analysis of Variance (ANOVA)

Slides:



Advertisements
Presentasi serupa
Menggambarkan Data: Tabel Frekuensi, Distribusi Frekuensi, dan Presentasi Grafis Chapter 2.
Advertisements

INTRO (TO BPOS). What is BPOS? Apakah BPOS itu? •BPOS = (Microsoft) Business Productivity Online Suite (Service) •adalah sebuah layanan online Microsoft,
+ Pemrograman Javascript Teknik Informatika Universitas Bunda Mulia Jakarta Chandra Hermawan H., M.Kom., MM.
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Algoritma & Pemrograman #10
3. Economic Returns to Land Resources: Theories of Land Rent
Mata Kuliah : ALGORITMA dan STRUKTUR DATA 1.
PEMOGRAMAN BERBASIS JARINGAN
ESTIMASI PENJUALAN DATA TIME SERIES - DEKOMPOSISI 1. ADDITIVE MODEL 2. MULTIPLICATIVE MODEL.
Program Keahlian I – SI By Antonius Rachmat C, S.Kom
Peta Kontrol (Untuk Data Variabel)
Statistika Nonparametrik PERTEMUAN KE-1 FITRI CATUR LESTARI, M. Si
Process to Process Delivery
ESTIMATION AND ROONDING OF NUMBERS
PERULANGANPERULANGAN. 2 Flow of Control Flow of Control refers to the order that the computer processes the statements in a program. –Sequentially; baris.
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
Artificial Intelligence
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
Review Operasi Matriks
Jeff Howbert Introduction to Machine Learning Winter Classification Nearest Neighbor.
Internal dan Eksternal Sorting
Pengantar Metode Penarikan Contoh dan Sebaran Penarikan Contoh
Ekonomi Manajerial dalam Perekonomian Global
Bilqis1 Pertemuan bilqis2 Sequences and Summations Deret (urutan) dan Penjumlahan.
1. P ENDUGAAN P ARAMATER DENGAN M ETODE M AXIMUM L IKELIHOOD 2.
Risk Management.
VALUING COMMON STOCKS Expected return : the percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes.
2-Metode Penelitian Dalam Psikologi Klinis
Implementing an REA Model in a Relational Database
Pertemuan 3 Menghitung: Nilai rata-rata (mean) Modus Median
UJI TUKEY Andreas L.H.K. Fitri Intan P. Jacob Da Costa
Pengujian Hipotesis.
II. Pengujian rata-rata k populasi
Pendugaan Parameter part 2
Pendugaan Parameter.
METODE SAMPLING by Achmad Prasetyo, S.Si., M.M..
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
3 nd Meeting Chemical Analysis Steps and issues STEPS IN CHEMICAL ANALYSIS 1. Sampling 2. Preparation 3. Testing/Measurement 4. Data analysis 2. Error.
Basisdata Pertanian. After completing this lesson, you should be able to do the following Identify the available group functions Describe the use of group.
2nd MEETING Assignment 4A “Exploring Grids” Assignment 4 B “Redesign Grids” Create several alternatives grid sysytem using the provided elements: (min.
BENTUK ING VERB + ING. Bentuk ING juga biasa disebut dengan ING form Meskipun pembentukannya sangat se- derhana tetapi penggunaannya mem- punyai aturan.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
TRAVERSING BINARY TREE
Linked List dan Double Linked List
Amortization & Depresiasi
Contentment Philippians 4: Contentment What does it mean to be content? What does it mean to be content? Are you a content person? Are you a content.
THE EFFICIENT MARKETS HYPOTHESIS AND CAPITAL ASSET PRICING MODEL
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
PERSAMAAN DAN PERTIDAKSAMAAN
Via Octaria Malau Transfer (Internal Transfers) Transfer (Transfers Internal) Select the account from which funds are to be transferred FROM and then select.
BAB 2 (sambungan) DESAIN BLOK LENGKAP ACAK
KONSEP DASAR PROBABILITAS
The intensive state of a PVT system containing N chemical species and  phases in equilibrium is characterized by the intensive variables, temperature.
Retrosintetik dan Strategi Sintesis
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Prosedur Tukey-Kramer (Pengujian Signifikansi Antar Populasi)
ANALYSIS OF VARIANCE (ANOVA)
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
Percobaan Satu Faktor-RAL
METODE STATISTIKA II Analysis of Variance Met Stat 2
ANALYSIS OF VARIANCE (ANOVA) Matakuliah: KodeJ0204/Statistik Ekonomi Tahun: Tahun 2007 Versi: Revisi.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 11-1 Chapter 11 Analysis of Variance Basic Business Statistics 10 th Edition.
ANOVA (Analysis of Variance)
Pengujian Hipotesis (I) Pertemuan 11
Presentasi Statistika Dasar
ANOVA (Analysis of Variance)
Nilai UTS.
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
Transcript presentasi:

Analysis of Variance (ANOVA)

Penjelasan Umum Seringkali kita ingin menguji apakah tiga atau lebih populasi memiliki rata-rata yg sama. Contoh: Apakah bahan bakar/km yg digunakan untuk beberapa merek mobil sama? Apakah pendapatan pekerja pada beberapa lapangan pekerjaan sama? Atau apakah biaya produksi yg menggunakan beberapa proses yg berbeda adalah sama?

Penjelasan Umum Kita dapat menggunakan cara seperti yg lalu untuk menguji kesamaan rata-rata dua populasi, tetapi hal tersebut akan memakan waktu dan perhitungan yg lebih lama. Contoh: jika ada 5 pop, maka ada 5C2 cara/perhitungan yg harus dilakukan. Untuk itu kita dapat melakukan uji secara simultan /keseluruhan populasi tersebut dengan menggunakan distribusi F dan metoda yg disebut  ANOVA (Analysis of Variance)

One-Way Analysis of Variance Assumptions Populations are normally distributed Populations have equal variances Samples are randomly and independently drawn

Hipotesis untuk One-Way ANOVA Seluruh rata-rata populasi adalah sama Artinya: Tidak ada efek treatment (tidak ada keragaman rata-rata dalam kelompok) Minimal salah satu rata-rata populasi ada yang tidak sama Artinya: Terdapat efek treatment (terdapat keragaman rata-rata dalam kelompok) Tidak berarti bahwa semua rata-rata populasi tidak sama (beberapa pasang mungkin sama)

The Null Hypothesis is True One-Factor ANOVA All Means are the same: The Null Hypothesis is True (No Treatment Effect)

One-Factor ANOVA At least one mean is different: (continued) At least one mean is different: The Null Hypothesis is NOT true (Treatment Effect is present) or

Partitioning the Variation

Partitioning the Variation Total variation can be split into two parts: SST = SSB + SSW SST = Total Sum of Squares SSB = Sum of Squares Between SSW = Sum of Squares Within

Partitioning the Variation (continued) SST = SSB + SSW Total Variation = jumlah kuadrat total (SST), yang mengukur keragaman total dalam data Between-Sample Variation = keragaman antar kelompok populasi (SSB) Within-Sample Variation = kergaman di dalam masing-masing kelompok populasi (SSW)

Partition of Total Variation Total Variation (SST) Variation Due to Factor (SSB) + Variation Due to Random Sampling (SSW) = Commonly referred to as: Sum of Squares Between Sum of Squares Among Sum of Squares Explained Among Groups Variation Commonly referred to as: Sum of Squares Within Sum of Squares Error Sum of Squares Unexplained Within Groups Variation

Total Sum of Squares SST = SSB + SSW Dimana: SST = Total sum of squares (Jumlah kuadrat total) k = jumlah populasi (kelompok, level atau treatment) ni = sample size dari populasi ke-i xij = pengamatan ke-jth dari populasi ke-i x = rata-rata total (rata-rata dari seluruh data)

Total Variation (continued)

Sum of Squares Between SST = SSB + SSW Dimana: SSB = Sum of squares between k = jumlah populasi (kelompok, level, atau treatment) ni = sample size dari populasi ke-i xi = rata-rata sample dari populasi ke-i x = rata-rata total (rata-rata dari seluruh data)

Between-Group Variation Variation Due to Differences Among Groups Mean Square Between = SSB/degrees of freedom

Between-Group Variation (continued)

Sum of Squares Within SST = SSB + SSW Dimana: SSW = Sum of squares within k = jumlah populasi (kelompok, level, atau treatment) ni = sample size dari populasi ke-i xi = rata-rata sample dari populasi ke-i xij = pengamatan ke-jth dari populasi ke-i

Within-Group Variation Summing the variation within each group and then adding over all groups Mean Square Within = SSW/degrees of freedom

Within-Group Variation (continued)

One-Way ANOVA Table Source of Variation SS df MS F ratio Between Samples SSB MSB SSB k - 1 MSB = F = k - 1 MSW Within Samples SSW SSW N - k MSW = N - k SST = SSB+SSW Total N - 1 k = jumlah populasi (kelompok, level, atau treatment) N = jumlah seluruh pengamatan df = derajat bebas

One-Factor ANOVA F Test Statistic H0: μ1= μ2 = … = μ k HA: At least two population means are different Test statistic MSB is mean squares between variances MSW is mean squares within variances Degrees of freedom df1 = k – 1 (k = number of populations) df2 = N – k (N = sum of sample sizes from all populations)

Interpreting One-Factor ANOVA F Statistic The F statistic is the ratio of the between estimate of variance and the within estimate of variance The ratio must always be positive df1 = k -1 will typically be small df2 = N - k will typically be large The ratio should be close to 1 if H0: μ1= μ2 = … = μk is true The ratio will be larger than 1 if H0: μ1= μ2 = … = μk is false

One-Factor ANOVA F Test Example Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 You want to see if three different golf clubs yield different distances. You randomly select five measurements from trials on an automated driving machine for each club. At the .05 significance level, is there a difference in mean distance?

One-Factor ANOVA Example: Scatter Diagram Distance 270 260 250 240 230 220 210 200 190 Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 • • • • • • • • • • • • • • • 1 2 3 Club

One-Factor ANOVA Example Computations Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 x1 = 249.2 x2 = 226.0 x3 = 205.8 x = 227.0 n1 = 5 n2 = 5 n3 = 5 N = 15 k = 3 SSB = 5 [ (249.2 – 227)2 + (226 – 227)2 + (205.8 – 227)2 ] = 4716.4 SSW = (254 – 249.2)2 + (263 – 249.2)2 +…+ (204 – 205.8)2 = 1119.6 MSB = 4716.4 / (3-1) = 2358.2 MSW = 1119.6 / (15-3) = 93.3

One-Factor ANOVA Example Solution Test Statistic: Decision: Conclusion: H0: μ1 = μ2 = μ3 HA: μi not all equal  = .05 df1= 2 df2 = 12 Critical Value: F = 3.885 Reject H0 at  = 0.05 There is evidence that at least one μi differs from the rest  = .05 Do not reject H0 Reject H0 F = 25.275 F.05 = 3.885

Uji Wilayah Berganda μ = Dari hasil pengujian kesamaan rata-rata populasi dgn ANOVA, jika keputusan adalah menolak Ho. Maka kita dapati kesimpulan bahwa tidak semua µ sama (paling sedikit ada dua yang tidak sama). Namun kita tidak tahu mana yang berbeda. Untuk mencari µ mana yang berbeda nyata → UJI WILAYAH BERGANDA DUNCAN DAN UJI TUKEY x μ 1 = 2 3

Uji Duncan Prosedur: Urutkan rata-rata sampel untuk masing-masing populasi (kelompok) dari yang terkecil hingga terbesar Hitung wilayah nyata terpendek dari berbagai rata-rata

Uji Duncan Kriteria pengujian Bandingkan selisih kedua rata-rata yang ingin dilihat perbedaannya dengan kriteria sbb: xi – xj ≤ Rp (Tidak berbeda nyata) xi – xj > Rp (Berbeda nyata)

Contoh: Uji Duncan 1. Urutkan rata-rata sampel: Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 2. Hitung wilayah nyata terpendek dari berbagai rata-rata: α = 0.05, df = 12

Contoh: Uji Duncan Bandingkan selisih rata-rata dengan Rp:

Uji Tukey-Kramer Dimana: q = Nilai dari standardized range table dengan df = k dan N - k MSW = Mean Square Within ni dan nj = Sample sizes dari populasi (kelompok) ke-i & ke-j

Contoh: Uji Tukey-Kramer 1. Compute absolute mean differences: Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 2. Find the q value from the table Tukey with k and N - k degrees of freedom for the desired level of 

Contoh: Uji Tukey-Kramer 3. Compute Critical Range: 4. Compare: 5. All of the absolute mean differences are greater than critical range. Therefore there is a significant difference between each pair of means at 5% level of significance.