Statistic Process Control

Slides:



Advertisements
Presentasi serupa
Menggambarkan Data: Tabel Frekuensi, Distribusi Frekuensi, dan Presentasi Grafis Chapter 2.
Advertisements

Fisika 2 Pendahuluan. Rencana Kuliah Fisika 2 Aturan Penilaian No.Komponen PenilaianPersentase Kehadiran Tugas-tugas Ujian Tengah Semester.
Statistika Deskriptif: Distribusi Proporsi
TURUNAN/ DIFERENSIAL.
Pengukuran Sudut Sudut adalah bangun yang dibentuk oleh 2 sinar garis yang bersekutu pada pangkalnya. 2 sinar garis itu disebut kaki sudut. Pangkal kedua.
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. © 2006 Microsoft Corporation. All.
METODE STATISTIKA Pertemuan III DISTRIBUSI SAMPLING.
Algoritma & Pemrograman #10
4 - 1 Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
MELAKUKAN INSTALASI SISTEM OPERASI WINDOWS XP
Materi Analisa Perancangan System.
ANALISIS PROSES BISNIS 8
Peta Kontrol (Untuk Data Variabel)
ANALISIS PROSES BISNIS 6
Bulan maret 2012, nilai pewarnaan :
IT SEBAGAI ALAT UNTUK MENCIPTAKAN KEUNGGULAN KOMPETISI
Process to Process Delivery
 Pembukaan WIB (Gedung Pusat Kegiatan Mahasiswa)  Babak Penyisihan WIB (Gedung Pusat Kegiatan Mahasiswa)  Pengumuman Hasil.
SOAL ESSAY KELAS XI IPS.
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
PS. SUPERVISOR JAMINAN MUTU PANGAN
Review Operasi Matriks
Peta Kendali Variabel.
Peta Kendali Variabel.
Pengantar Metode Penarikan Contoh dan Sebaran Penarikan Contoh
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
Soal-Soal Latihan Mandiri
Could not load an object because it is not avaliable on this machine. Tidak dapat memuat sebuah benda karena tidak tersedia pada mesin ini.
Risk Management.
VALUING COMMON STOCKS Expected return : the percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes.
Implementing an REA Model in a Relational Database
Pertemuan 3 Menghitung: Nilai rata-rata (mean) Modus Median
Analysis of Variance (ANOVA)
Pendugaan Parameter part 2
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
3 nd Meeting Chemical Analysis Steps and issues STEPS IN CHEMICAL ANALYSIS 1. Sampling 2. Preparation 3. Testing/Measurement 4. Data analysis 2. Error.
BOROBUDUR (4) FAHMI BASYA
01. EBTANAS-SMP Volume sebuah kerucut adalah 314 cm3, Jika jari-jari alasnya 5 cm dan π = 3,14, maka panjang garis pelukisnya adalah ... A. 4 cm.
TURUNAN DIFERENSIAL Pertemuan ke
Sistem Koordinat Bumi.
Jawaban Soal No 01 Kecepatan resultan pesawat adalah jumlah kecepatan sebesar 500 km/jam arah Timur dan kecepatan 90 km/jam arah selatan. Kedua kecepatan.
Alat Ukur Waktu dengan Satuan Jam
Probability Distribution
DISTRIBUSI PROBABILITAS DISKRET
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
: : Sisa Waktu.
Romans 1: Romans 1:16-17 New Living Translation (NLT) 16 For I am not ashamed of this Good News about Christ. It is the power of God at work, saving.
PERKEMBANGAN KELULUSAN SMP/MTS, SMA/MA DAN SMK KOTA SEMARANG DUA TAHUN TERAKHIR T.P DAN 2013.
Pengujian Hipotesis 2 rata-rata.
Pengujian Hipotesis Parametrik 2
PERTEMUAN KE 9 MENU TUNGGAL.
Kuliah ke 12 DISTRIBUSI SAMPLING
Bulan FEBRUARI 2012, nilai pewarnaan :
DISTRIBUSI NORMAL.
Koefisien Korelasi Pearson dan Regresi Linier Sederhana
PENGUJIAN HIPOTESIS RATA-RATA (MEAN) 1 SAMPEL
Modul 12 : Pengendalian Kualitas Statistik
USAHA DAN ENERGI ENTER Klik ENTER untuk mulai...
SAMPLING DAN DISTRIBUSI SAMPLING
PENGUJIAN PARAMETER DENGAN DATA SAMPEL
Statistika Deskriptif: Distribusi Proporsi
Dasar probabilitas.
JamSenin 2 Des Selasa 3 Des Rabu 4 Des Kamis 5 Des Jumat 6 Des R R S S.
MARI BELAJAR MATEMATIKA
DISTRIBUSI CHI SQUARE (Kai kuadrat)
BAB2 QUEUE 6.3 & 7.3 NESTED LOOP.
TERNAK PEMULIAAN ILMU.
Pengantar sistem informasi Rahma dhania salamah msp.
Statistic Process Control Week 3 Ananda Sabil Hussein, SE, MCom.
Transcript presentasi:

Statistic Process Control Week 3 Ananda Sabil Hussein, SE, MCom

Latar Belakang Pertengahan tahun 80 an pangsa pasar pager Motorola di rebut oleh produk-produk Jepang seperti halnya NEC, TOSHIBA dan Hitachi. Motorola melakukan perubahan radikal dengan memperbaiki mutu, pengembangan produk dan penurunan biaya yang berbasis statistik

Statistical Process Control Teknik statistik yang secara luas digunakan untuk memastikan bahwa proses yang sedang berjalan telah memenuhi standar.

Start Produce Good Provide Service Stop Process Yes No Assign. Causes? Take Sample Inspect Sample Find Out Why Create Control Chart

Variasi Alami dan Khusus Variasi alami adalah sumber-sumber variasi dalam proses yang secara statistik berada dalam batas kendali Variasi Khusus/dapat dihilangkan yaitu variasi yang muncul disebabkan karena peralatan yang tidak sesuai, karyawan yang lelah atau kurang terlatih serta bahan baku baru.

Diagram Pengendalian

17 = UCL 16 = Mean 15 = LCL Sample number | | | | | | | | | | | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 17 = UCL 15 = LCL 16 = Mean

Konsep Rata-rata dan Jarak

Menentukan Batas Diagram Rata-rata Batas Kendali Atas (UCL) = Batas Kendali Bawah (LCL) = = rata-rata dari sampel = = Standar deviasi = 2 (95.5%) 3(99.7%) = Standar deviasi rata-rata sampel

Cara Lain Batas Kendali Atas = Batas Kendali Bawah Dimana : = rentangan rata-rata sampel = Nilai batas kendali = rata-rata dari sampel rata-rata

Batas Bagan Rentangan

Bagan Rata-rata (a) These sampling distributions result in the charts below (Sampling mean is shifting upward but range is consistent) R-chart (R-chart does not detect change in mean) UCL LCL x-chart (x-chart detects shift in central tendency)

Bagan Jarak (b) These sampling distributions result in the charts below (Sampling mean is constant but dispersion is increasing) x-chart (x-chart does not detect the increase in dispersion) UCL LCL R-chart (R-chart detects increase in dispersion) UCL LCL Figure S6.5

Bagan Kendali Atribut Mengukur persentase penolakan dalam sebuah sampel, bagan-p Menghitung jumlah penolakan, bagan-c

Control Charts for Attributes For variables that are categorical Good/bad, yes/no, acceptable/unacceptable Measurement is typically counting defectives Charts may measure Percent defective (p-chart) Number of defects (c-chart)

Control Limits for p-Charts Population will be a binomial distribution, but applying the Central Limit Theorem allows us to assume a normal distribution for the sample statistics UCLp = p + zsp ^ p(1 - p) n sp = ^ Instructors may wish to point out the calculation of the standard deviation reflects the binomial distribution of the population LCLp = p - zsp ^ where p = mean fraction defective in the sample z = number of standard deviations sp = standard deviation of the sampling distribution n = sample size ^

Contoh Soal Jam Rata2 1 17.1 5 16.5 9 16.3 2 18.8 6 16.4 10 3 14.5 7 15.2 11 14.2 4 14.8 8 12 17.3

Ditanyakan : Batas kendali proses 9 boks yang mencakup 99.7% Jawab : = 16 + 3 UCLx = LCLx = = 16 - 3

Setting Control Limits Process average x = 16.01 ounces Average range R = .25 Sample size n = 5

Setting Control Limits UCLx = x + A2R = 16.01 + (.577)(.25) = 16.01 + .144 = 16.154 ounces Process average x = 16.01 ounces Average range R = .25 Sample size n = 5 From Table S6.1

Setting Control Limits Process average x = 16.01 ounces Average range R = .25 Sample size n = 5 UCL = 16.154 Mean = 16.01 LCL = 15.866 UCLx = x + A2R = 16.01 + (.577)(.25) = 16.01 + .144 = 16.154 ounces LCLx = x - A2R = 16.01 - .144 = 15.866 ounces

Contoh Soal Sample Number Fraction Sample Number Fraction Number of Errors Defective Number of Errors Defective 1 6 .06 11 6 .06 2 5 .05 12 1 .01 3 0 .00 13 8 .08 4 1 .01 14 7 .07 5 4 .04 15 5 .05 6 2 .02 16 4 .04 7 5 .05 17 11 .11 8 3 .03 18 3 .03 9 3 .03 19 0 .00 10 2 .02 20 4 .04 Total = 80 p = = .04 80 (100)(20) (.04)(1 - .04) 100 sp = = .02 ^

p-Chart for Data Entry UCLp = p + zsp = .04 + 3(.02) = .10 ^ LCLp = p - zsp = .04 - 3(.02) = 0 ^ .11 – .10 – .09 – .08 – .07 – .06 – .05 – .04 – .03 – .02 – .01 – .00 – Sample number Fraction defective | | | | | | | | | | 2 4 6 8 10 12 14 16 18 20 UCLp = 0.10 LCLp = 0.00 p = 0.04

Possible assignable causes present p-Chart for Data Entry .11 – .10 – .09 – .08 – .07 – .06 – .05 – .04 – .03 – .02 – .01 – .00 – Sample number Fraction defective | | | | | | | | | | 2 4 6 8 10 12 14 16 18 20 UCLp = p + zsp = .04 + 3(.02) = .10 ^ LCLp = p - zsp = .04 - 3(.02) = 0 UCLp = 0.10 LCLp = 0.00 p = 0.04 Possible assignable causes present There is always a focus on finding and eliminating problems. But control charts find any process changed, good or bad. The clever company will be looking at Operator 3 and 19 as they reported no errors during this period. The company should find out why (find the assignable cause) and see if there are skills or processes that can be applied to the other operators.

Control Limits for c-Charts Population will be a Poisson distribution, but applying the Central Limit Theorem allows us to assume a normal distribution for the sample statistics UCLc = c + 3 c LCLc = c - 3 c Instructors may wish to point out the calculation of the standard deviation reflects the Poisson distribution of the population where the standard deviation equals the square root of the mean where c = mean number defective in the sample

c-Chart for Cab Company c = 54 complaints/9 days = 6 complaints/day UCLc = c + 3 c = 6 + 3 6 = 13.35 | 1 2 3 4 5 6 7 8 9 Day Number defective 14 – 12 – 10 – 8 – 6 – 4 – 2 – 0 – UCLc = 13.35 LCLc = 0 c = 6 LCLc = c - 3 c = 3 - 3 6 = 0