KALKULUS 2.

Slides:



Advertisements
Presentasi serupa
DIFFERENSIAL Pertemuan 1
Advertisements

TURUNAN/ DIFERENSIAL.
INTEGRAL TAK TENTU (ANTI DERIVATIF)
Teknik Pengintegralan
KALKULUS 2 Adi Nur Cahyono, S.Pd., M.Pd.
Bilangan Real ® Bil. Rasional (Q)
Oleh : Epha Diana Supandi, M.Sc
Integral tak tentu Kelas XII - IPS.
MATA KULIAH KALKULUS I (4 sks) Dosen : Ir. RENILAILI, MT
BAHAN AJAR KALKULUS INTEGRAL Oleh: ENDANG LISTYANI PERSAMAAN DIFERENSIAL Masalah: Tentukanlah persamaan suatu kurva y= f(x) yang melalui titik (1,3) dan.
SATUAN ACARA PERKULIAHAN (SAP)
KALKULUS 1.
Pertemuan I Kalkulus I 3 sks.
Kalkulus Teknik Informatika
Kalkulus Lanjut (slide 1)
Kalkulus Teknik Informatika
MATEMATIKA II Vivi Tri Widyaningrum,S.Kom.
INTEGRAL Asep Saeful ulum Feri Ferdiansyah Hilman Nuha Ramadhan
INTEGRAL TAK TENTU.
IR. Tony hartono bagio, mt, mm
Modul V : Turunan Fungsi
Bab V INTEGRAL TERTENTU
Prof.Dr.Ir.SRI REDJEKI MT
Fungsi Invers, Eksponensial, Logaritma, dan Trigonometri
Sistem Penilaian Kalkulus 2 PR220 % TTS40 % TAS40 % Total 100%
Pertemuan I Kalkulus I 3 sks.
MATA KULIAH KALKULUS I (4 sks) Dosen : Ir. RENILAILI, MT
ANISA KURNIAWATI, PENYELESAIAN KASUS BEBERAPA INTEGRAL TAK WAJAR DENGAN INTEGRAN MEMUAT FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMA.
6. INTEGRAL.
PD Tingkat/orde Satu Pangkat/derajat Satu
PENGANTAR TEKNIK INDUSTRI
6. INTEGRAL.
6. INTEGRAL.
Pertemuan VIII Kalkulus I 3 sks.
MATEMATIKA KELAS XII SEMESTER GANJIL
Pengantar Model Linier
PENDAHULUAN MATEMATIKA EKONOMI
KALKULUS 1 IKA ARFIANI, S.T..
Mata Kuliah Kalkulus I (Kalkulus Differensial)
PENDAHULUAN MATEMATIKA EKONOMI.
Kalkulus Lanjut (slide 1)
KALKULUS 2 INTEGRAL.
KONTRAK PERKULIAHAN KALKULUS MULTIVARIABEL I
UNIVERSITAS MUHAMMADIYAH SUKABUMI
Kalkulus 1 Kania Evita Dewi.
PENDAHULUAN MATEMATIKA EKONOMI.
Kontrak Perkuliahan: Kalkulus Multivariabel I
MODUL 12. INTEGRAL TAK TENTU TUJUAN INSTRUKSIONAL KHUSUS :
PELAKSANA MATA KULIAH UMUM (PAMU)
Curicullum Vitae. Curicullum Vitae MAT 29 PERSAMAAN DIFFERENSIAL Prasyarat telah menempuh: MAT 06 Kalkulus I MAT 07 Kalkulus II MAT 08 Kalkulus Peubah.
Persamaan Diferensial Non-Eksak (Tidak Eksak)
Penjelasan Awal Perkuliahan
Oleh : Epha Diana Supandi, M.Sc
KALKULUS PEUBAH BANYAK
Matematika Teknik II Anhar, ST. MT..
Mahasiswa mampu memecahkan persoalan
SEMESTER 3 ANALISIS VEKTOR
Kalkulus II ( IF ) Pendahuluan Juwairiah, S.Si,M.T
KALKULUS 2 INTEGRAL.
ALJABAR MATRIKS Budi Murtiyasa Jur. Pendidikan Matematika
Pendahuluan Fisika Elektro 1.
Motivasi Apa anda juga ingin seperti orang ini Berusaha mendapatkan
KALKULUS 1.
MATEMATIKA 2.
Kalkulus Lanjut (slide 1)
UNIVERSITAS MUHAMMADIYAH SUKABUMI
Dosen Pengampu : GUNAWAN.ST.,MT
Matematika Dasar 2A Dr. Iffatul Mardhiyah, S.Si., M.Si.
Sudiarto, SMK Negeri 5 Jember, 2013/2014 INTEGRAL Disusun oleh: Sudiarto, S.Pd, M.Pd NIP SMK NEGERI 5 JEMBER MULAI y a x 0 b.
INTEGRAL TAK TENTU & TENTU FUNGSI ALJABAR. Integral Tak Tentu.
Transcript presentasi:

KALKULUS 2

POKOK BAHASAN 1. INTEGRAL TAK TENTU - pengertian, rumus dasar integral 2. LANJUTAN INTEGRAL TAK TENTU - metode substitusi, integral parsial, rumus reduksi 3. INTEGRAL FUNGSI ALJABAR & NON-ALJABAR I - integral fungsi trigonometrik & fungsi hiperbolik 4. INTEGRAL FUNGSI ALJABAR & NON-ALJABAR I I - integral fungsi eksponensial & fungsi logaritma 5. INTEGRAL FUNGSI ALJABAR & NON-ALJABAR III - integral fungsi rasional 6. INTEGRAL RANGKAP DUA & RANGKAP TIGA I - integral rangkap dua 7. INTEGRAL RANGKAP DUA & RANGKAP TIGA II - integral rangkap tiga

Cont.. 8. INTEGRAL TERTENTU I - integral tertentu 9. INTEGRAL TERTENTU II - teorema harga menengah untuk luas daerah - integral tak wajar 10. INTEGRAL GARIS - pengertian integral garis 11. PEMAKAIAN INTEGRAL TERTENTU I - Menerapkan integral untuk memecahkan masalah panjang busur, luasan daerah 12. PEMAKAIAN INTEGRAL TERTENTU II - Menerapkan integral untuk mencari volume, nilai titik berat dan momen 13. PERSAMAAN DIFFERENSIAL I - Persamaan differensial homogen 14. PERSAMAAN DIFFERENSIAL II - Persamaan differensial tak homogen

Aspek Penilaian Prosentase Ujian Akhir Semester 25 % Ujian Tengah Semester 25 % Kuis (2 kali) 20 % Tugas 20 % Keaktifan Mahasiswa 10 %

ATURAN MASUK KULIAH JAM ..... TERLAMBAT .... MENIT Ketua () Dll sesuai kesepakatan

Daftar Referensi Wajib : [1] Frank Ayres, 1972, Calculus, Mc Graw Hill New York. [2] Ayres,Jr.F., 1964, Theory and Problems of Differential and Integral Calculus, 2nd.ed.,New York:Schaum Publ.Co. Anjuran : [1] Baisuni, H., 1986, Kalkulus, Penerbit Universitas Indonesia. [2] Purcell, E., 1993, Kalkulus dan Geometri Analitis, Erlangga

INTEGRAL TAK TENTU PENGERTIAN Integral tak tentu atau antiderivatif adalah suatu bentuk operasi pengintegralan suatu fungsi yang menghasilkan suatu fungsi baru. Fungsi ini belum memiliki nilai pasti (berupa variabel) sehingga cara pengintegralan yang menghasilkan fungsi tak tentu ini disebut integral tak tentu.

Bila f adalah integral tak tentu dari suatu fungsi F maka F'= f Bila f adalah integral tak tentu dari suatu fungsi F maka F'= f. Atau dengan kata lain Integral adalah kebalikan dari hitung deferensial. Pada hitung deferensial yang dicari adalah fungsi turunannya, sedangkan pada hitung integral yang dicari adalah fungsi yang menurunkannya, atau fungsi asalnya atau fungsi anti derivatifnya.

RUMUS DASAR INTEGRAL 1

Rumus-rumus dibawah ini untuk melengkapi rumus diatas, disini variabel U digunakan untuk menggantikan variabel X. Namun pada dasarnya mempunyai prinsip yang sama, hanya variabelnya saja yang berbeda.

CONTOH ∫ x dx 6. ∫ 1/3x2 dx ∫ 2x dx 7. ∫ (x2 + x)dx ∫ x2 dx

CONTOH : 1. ∫ X dx = + C

2. ∫ 2X dx ?

SELESAI