Matrik dan Ruang Vektor

Slides:



Advertisements
Presentasi serupa
BAB III VEKTOR.
Advertisements

BAB 2 VEKTOR Besaran Skalar Dan Vektor
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Vektor dan Skalar Vektor adalah Besaran yang mempunyai besar dan arah.
DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA
Vektor oleh : Hastuti.
Bab 4 vektor.
BAB IV V E K T O R.
Aljabar Vektor (Perkalian vektor-lanjutan)
Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)
PENGANTAR VEKTOR.
Matrik dan Ruang Vektor
SUDUT ANTARA DUA VEKTOR PROJEKSI & KOMPONEN DUA VEKTOR
Pengantar Vektor.
Diferensial Vektor TKS 4007 Matematika III (Pertemuan II) Dr. AZ
FISIKA LISTRIK DAN MEKANIKA
BAB V (lanjutan) VEKTOR.
BAB 2 VEKTOR 2.1.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
ALJABAR LINIER & MATRIKS
Vektor Ruang Dimensi 2 dan Dimensi 3
BAB V (lanjutan) VEKTOR.
Vektor By : Meiriyama Program Studi Teknik Komputer
VEKTOR.
Matakuliah : D0684 – FISIKA I
BESARAN FISIKA DAN SISTEM SATUAN
VEKTOR BUDI DARMA SETIAWAN.
VEKTOR-VEKTOR DALAM RUANG BERDIMENSI 2 DAN RUANG BERDIMENSI 3
2. VEKTOR 2.1 Vektor Perpindahan B
Hasil kali silang dua vektor
MATA KULIAH MATEMATIKA LANJUT 1 [KODE/SKS : IT / 2 SKS]
VEKTOR 2.1.
(Tidak mempunyai arah)
Tri Rahajoeningroem,MT T. Elektro - UNIKOM
VEKTOR VEKTOR PADA BIDANG.
PERKALIAN VEKTOR LANJUT
PERKALIAN VEKTOR Di sini ditanyakan apa yang dimaksud dengan fisika.
BAB 2 VEKTOR Pertemuan
Kalkulus 2 Vektor Ari kusyanti.
Vektor.
VektoR.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
MATERI DASAR FISIKA.
PENGANTAR VEKTOR.
PERTEMUAN II VEKTOR.
Aljabar Linear Elementer
RUANG VEKTOR.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Aljabar Linier Vektor Oleh: Chaerul Anwar, MTI.
Satuan Pendidikan : SMA Mata Pelajaran : Fisika Kelas / Semester : X MIA / Ganjil Materi Pembelajaran : Vektor Alokasi Waktu : 1 x 120 menit.
Perkalian vektor Perkalian titik (dot product)
BAB 3 VEKTOR 2.1.
Oleh : Farihul Amris A, S.Pd.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
VEKTOR.
Vektor dan Ruang Vektor
VEKTOR.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 2 VEKTOR 2.1.
VEKTOR Dosen : ANDI MARIANI RAMLAN, S.Pd., M.Pd
VEKTOR.
A. Tinjauan Vektor Secara Geometris
A. Tinjauan Vektor Secara Geometris
PERKALIAN VEKTOR LANJUT
Vektor Indriati., ST., MKom.
Komponen vektor merupakan proyeksi vektor pada sumbu sistem koordinat
Perkalian vektor Perkalian titik (dot product)
PENGANTAR VEKTOR.
Transcript presentasi:

Matrik dan Ruang Vektor Jurusan/Program Studi Teknik Industri Fakultas Teknik 2012/2013

V E K T O R Vektor-vektor dapat dinyatakan secara geometris sebagai segmen – segmen garis terarah ataupun panah-panah di ruang-2 atau ruang-3; arah panah menentukan arah vektor dan panjang panah menyatakan besarnya. Ekor panah disebut titik awal (initial point) dari vektor, dan ujung panah dinamakan titik terminal (terminal point).

Vektor – vektor yang mempunyai panjang dan arah yang sama, seperti pada gambar disebut ekivalen. Untuk menuliskan panjang vektor v digunakan notasi |v|

Operasi-operasi pada vektor 1. Penjumlahan Vektor Ada 2 metode yang dapat digunakan untuk menjumlahkan 2 buah vektor a.1 Metode Jajaran Genjang Vektor hasil (resultant) yaitu a + b diperoleh dari diagonal jajaran genjang yang dibentuk oleh vektor a dan b setelah titik awal dan titik akhir ditempatkan berimpit.

a.2 Metode Segitiga Resultan diperoleh dengan menempatkan titik awal salah satu vektor pada titik ujung vektor yang lain, maka resultannya adalah vektor bertitik awal di titik awal a dan bertitik ujung di titik ujung b

Catatan : 1. Penjumlahan vektor bersifat komutatif, a + b = b + a 2. Metode Segitiga baik sekali digunakan untuk menjumlahkan lebih dari 2 vektor. Misalnya a + b + c + d + e , maka resultannya adalah vektor dengan titik awal di titik awal vektor a dan bertitik ujung di titik ujung vektor e 3. Pengurangan vektor a dan b adalah a – b = a + (-b)

b. Perkalian Skalar Jika k adalah suatu skalar bilangan riil, a suatu vektor, maka perkalian skalar ka menghasilkan suatu vektor yang panjangnya |k| kali panjang a dan arahnya sama dengan arah a bila k positif atau berlawanan arah bila k negatif. Bila k = 0 maka ka =0 disebut vektor nol, yaitu vektor yang titik awal dan titik ujungnya berimpit.

1.3 Susunan Koordinat Ruang-n

c. Ruang dimensi tiga (R3)

Contoh 1.1 Diketahui vektor v = (2, -1, 1) dan w=(1, 1,2) Carilah v.w dan tentukan sudut antara v dan w.

Jawab :

1.7 Cross Product (Hasil Kali Silang) Dalam banyak penerapan vektor pada bidang geometri, fisika, dan teknik, kita perlu membentuk vektor di ruang-3 yang tegak lurus dengan 2 vektor lain yang diberikan. Definisi Jika v =(v1, v2, v3) dan w = (w1, w2, w3) adalah vektor – vektor di Ruang-3, maka hasil kali silang (cross product) v x w adalah vektor yang didefinisikan oleh v x w = (v2w3 – v3w2, v3w1 – v1w3, v1w2 – v2w1) atau dalam notasi determinan

Contoh 1.2 Carilah u x v dimana u = (1, 2, -2) dan v=(3, 0, 1)

1.8 Persamaan Garis Lurus dan Bidang Rata a. Garis Lurus

b. Bidang Rata

Terimakasih