Rancangan Acak Lengkap

Slides:



Advertisements
Presentasi serupa
UKURAN NILAI PUSAT UKURAN NILAI PUSAT ADALAH UKURAN YG DAPAT MEWAKILI DATA SECARA KESELURUHAN JENIS UKURAN NILAI PUSAT : MEAN , MEDIAN, MODUS KUARTIL,
Advertisements

Teori Graf.
Statistika Deskriptif: Distribusi Proporsi
(Matematika Al-Quran)
PERCOBAAN FAKTORIAL DENGAN RANCANGAN ACAK KELOMPOK Prof. Kusriningrum
Bulan maret 2012, nilai pewarnaan :
Dosen Pembimbing : Yudi Cahyoko, Ir., M.Si Agustono, Ir., M.Kes

VIII. RANCANGAN PETAK-PETAK TERBAGI
BY: Ir. Suyatno, M.Si. Program Studi Peternakan Fakultas Ilmu-Ilmu Pertanian Universitas Muhammadiyah Malang.
Bab 11A Nonparametrik: Data Frekuensi Bab 11A.
Bab 9B Analisis Variansi Bab 9B
BADAN KOORDINASI KELUARGA BERENCANA NASIONAL DIREKTORAT PELAPORAN DAN STATISTIK DISAJIKAN PADA RADALGRAM JAKARTA, 4 AGUSTUS 2009.
PEMBANDINGAN BERGANDA (Prof. Dr. Kusriningrum)
RANCANGAN ACAK KELOMPOK (RANDOMIZED BLOCK DESIGN) atau RANCANGAN KELOMPOK LENGKAP TERACAK (RANDOMIZED COMPLITE BLOCK DESIGN) Prof.Dr. Kusriningrum.
BOROBUDUR (4) FAHMI BASYA
Mari Kita Lihat Video Berikut ini.
Statistika Deskriptif
Bab 6B Distribusi Probabilitas Pensampelan
ANALISA NILAI KELAS A,B,C DIBUAT OLEH: NAMA: SALBIYAH UMININGSIH NIM:
12. FAKTORIAL RANCANGAN PETAK TERBAGI
Contoh DAFTAR Subjek Frekuensi (f) a – b 1 c – d 2 e – f 3 .. Jumlah.
UKURAN PENYEBARAN DATA
Ukuran Pemusatan dan Ukuran Penyebaran
DISTRIBUSI FREKUENSI oleh Ratu Ilma Indra Putri. DEFINISI Pengelompokkan data menjadi tabulasi data dengan memakai kelas- kelas data dan dikaitkan dengan.
Rabu 23 Maret 2011Matematika Teknik 2 Pu Barisan Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat – sifat barisan Barisan Monoton.
Soal Latihan.
PENINGKATAN KUALITAS PEMBELAJARAN DAN PEMAHAMAN PERANCANGAN PERCOBAAN MAHASISWA SEMESTER VI FAKULTAS KEDOKTERAN HEWAN UNIVERSITAS AIRLANGGA SURABAYA PENANGGUNG.
PERKEMBANGAN KELULUSAN SMP/MTS, SMA/MA DAN SMK KOTA SEMARANG DUA TAHUN TERAKHIR T.P DAN 2013.
Pengujian Hipotesis Parametrik 2
Pengujian Hypotesis - 3 Tujuan Pembelajaran :
P E R C O B A A N F A K T O R I A L D E N G A N RANCANGAN ACAK LENGKAP
NILAI RATA-RATA (CENTRAL TENDENCY)
UKURAN PEMUSATAN DATA Sub Judul.
Bab 16 Sekor Komposit dan Seleksi Sekor Komposi dan Seleksi
Perancangan Percobaan
Bulan FEBRUARI 2012, nilai pewarnaan :
AREAL PARKIR PEMERINTAH KABUPATEN JEMBRANA
KINERJA SAMPAI DENGAN BULAN AGUSTUS 2013
Bab 13A Nonparametrik: Data Peringkat I Bab 13A
PEMBANDINGAN ORTOGONAL ( Prof.Dr. Kusriningrum )
PENGUJIAN HIPOTESA Probo Hardini stapro.
RANCANGAN BUJURSANGKAR LATIN ( LATIN SQUARE DESIGN)
UNSUR DASAR PERANCANGAN PERCOBAAN, KERAGAMAN, MODEL PERCOBAAN
Graf.
Bab 9B Analisis Variansi Bab 9B
Rancangan Percobaan.
Statistika Deskriptif: Statistik Sampel
Rancangan Acak Lengkap (Completely Randomized Design)
DISTRIBUSI FREKUENSI.
Statistika Deskriptif: Distribusi Proporsi
Nilai Ujian Statistik 80 orang mahasiswa Fapet UNHAS adalah sebagai berikut:
Teknik Numeris (Numerical Technique)
Bahan Kuliah ke-16 IF5054 Kriptografi
• Perwakilan BKKBN Provinsi Sulawesi Tengah•
Bab 7 Nilai Acuan Norma.
UKURAN PEMUSATAN DAN LETAK DATA
Korelasi dan Regresi Ganda
SPLIT PLOT DESIGN Erlina Ambarwati.
UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0)
Rancangan Acak Lengkap
RANCANGAN ACAK KELOMPOK (RANDOMIZED BLOcK Design)
Rancangan Acak Lengkap
STATISTIKA INDUSTRI I RANCANGAN PERCOBAAN:
RANCANGAN ACAK LENGKAP (FULLY RANDOMIZED DESIGN, COMPLETELY RANDOMIZED DESIGN) Untuk percobaan yang mempunyai media atau tempat percobaan yang seragam.
RANCANGAN ACAK KELOMPOK (RANDOMIZED BLOcK Design)
Rancangan Acak Lengkap
RANCANGAN ACAK KELOMPOK (RANDOMIZED BLOCK DESIGN) atau RANCANGAN KELOMPOK LENGKAP TERACAK (RANDOMIZED COMPLITE BLOCK DESIGN) Prof.Dr. Kusriningrum.
RANCANGAN ACAK LENGKAP (FULLY RANDOMIZED DESIGN, COMPLETELY RANDOMIZED DESIGN) Untuk percobaan yang mempunyai media atau tempat percobaan yang seragam.
Rancangan Acak Lengkap
Transcript presentasi:

Rancangan Acak Lengkap (RAL) Completely Randomized Design Atau Fully Randomized Design

CIRI - CIRI R.A.L. : 1. Media atau bahan percobaan “seragam” (dapat dianggap se- ragam ) 2. Hanya ada satu sumber kera- gaman, yaitu perlakuan (disam- ping pengaruh acak)

Yij = nilai pengamatan pada perlakuan ke i, ulangan ke j Model Matematika RAL: . Yij = μ + Τi + εij i = 1, 2, …… , t j = 1, 2,………., n Yij = nilai pengamatan pada perlakuan ke i, ulangan ke j μ = nilai tengah umum Τi = pengaruh perlakuan ke i εij = pengaruh acak (kesalahan percobaan) pada perlakuan ke i dan ulangan ke j t = banyaknya perlakuan n = banyaknya ulangan

ULANGAN pada RAL : Diperoleh dari: Derajat bebas galat RAL ≥ 15 t ( n – 1 ) ≥ 15 t = banyaknya perlakuan n = banyaknya ulangan Contoh: Diketahui jumlah perlakuan yang diberikan = t = 3 Maka ulangan minimal yang diperlukan: t ( n – 1 ) ≥ 15 3 ( n – 1 ) ≥ 15 3n – 3 ≥ 15 3n ≥ 18 → n = 18/3 = 6

C3 B1 D2 A4 E2 A1 D1 F3 A2 C1 F1 B3 B2 F4 E3 D3 B4 C2 A3 D4 F2 E1 C4 Cara Pengacakan RAL secara acak lengkap Misalnya: Perlakuan A, B, C, D, E dan F Ulangan 4 kali A1, A2, A3, A4 B1, B2, B3, B4 dst diperoleh: 6 x 4 = 24 satuan percobaan C3 B1 D2 A4 E2 A1 D1 F3 A2 C1 F1 B3 B2 F4 E3 D3 B4 C2 A3 D4 F2 E1 C4 E4

PENGOLAHAN DATA dan SIDIK RAGAM Percobaan dengan t perlakuan dan n ulangan Ulangan Perlakuan Total 1 2 . . . . . . . . . . . . . . t 1 2 . n Y11 Y21 . . . . . . . . . . . . . Yt1 Y12 Y22 . . . . Y1n Y2n Ytn Y1. Y2. Yt . Y.. Rerata Y1. Y2. Yt .

t Hasil pengamatan yang mendapat Y 1 2 = perlakuan 1 dan ulangan ke 2 j = 1 Faktor Koreksi = FK = —— JKT = ∑ ∑ Yi j - FK JKG = JKT - JKP JKP = ∑ ─── - FK Y. . 2 t x n t n 2 i = 1 J = 1 t Yi . 2 i = 1 n

Sidik Ragam = Analisis Ragam (Analysis of variance = ANOVA) Sumber Keragaman ( S.K.) Derajat Bebas (d.b.) Jumlah Kuadrat (J.K.) Tengah (K.T.) Fhit F tabel 0,05 0.01 Perlakuan Galat percobaan t – 1 t (n –1) JKP JKG KTP KTG T o t a l t n - 1 JKT

(1). Fhitung < Ftabel → tidak berbeda nyata (non significant) ↓ JKP JKG JKT KTP = —— KTG = —— KTT = —— t - 1 t (n-1) t n – 1 KTP Fhit.= —— KTT ≠ KTP + KTG KTG Kemungkinan akan diperoleh: (1). Fhitung < Ftabel → tidak berbeda nyata (non significant) ↓ Berarti: - terima H0 ( tolak H1 ) - tidak terdapat perbedaan di antara perlakuan

(2). Fhitung ≥ Ftabel 0,05 → berbeda nyata (significant), Fhitung ≥ Ftabel 0,01 → berbeda sangat nyata (highly significant) ↓ Berarti: - terima H1 (tolak H0) - salah satu atau lebih dari perla- kuan yang diberikan, berbeda dengan perlakuan yang lain Perlu uji lebih lanjut untuk menentukan perlakuan-perlakuan mana yang berbeda nyata satu sama lain

Contoh: Penelitian menggunakan RAL dan Cara pengolahan hasilnya Penelitian ingin mengetahui pengaruh 3 macam ransum: A = ransum setempat B = ransum + 0,1% Pfizer Penicilin Feed Supplement C = ransum + 0,1% Pfizer Teramycin Animal Mix terhadap berat badan ternak babi. Tersedia anak-anak babi umur 4½ bulan, sebanyak 21 ekor dilahirkan pada waktu yang sama, dengan keadaan yang “seragam” ( jantan semua, dan dengan berat badan yang relatif sama) [Dalam hal ini semua “sama” kecuali perlakuan → RAL ]

A2 B3 C7 B6 A4 C5 B2 C6 B4 A5 C4 B1 A3 C1 C3 A1 B7 A6 C2 B5 A7 - Rancangan acak lengkap dgn: perlakuan = t = 3 ulangan = n = 21/3 = 7 Hasil pengacakan yang dilakukan: A2 B3 C7 B6 A4 C5 B2 C6 B4 A5 C4 B1 A3 C1 C3 A1 B7 A6 C2 B5 A7

Yi j = μ + זi + εi j dengan: i = 1, 2, 3. Model umum matematika penelitian: Yi j = μ + זi + εi j dengan: i = 1, 2, 3. j = 1, 2, . . . .. 7 Yi j = bobot babi yang menerima perlakuan ransum ke i pada ulangan ke j μ = nilai tengah umum זi = pengaruh perlakuan ransum ke I εi j = pengaruh acak (kesalahan percobaan) pada perlakuan ransum ke I dan ulangan ke j Hasil penelitian → Bobot babi pada akhir penelitian: (A): 70,2; 61,0; 87,6; 77,0; 68,6; 73,2 dan 57,4 kg (B): 64,0; 84,6; 73,0; 79,0; 81,0; 78,6 dan 71,0 kg (C): 88,4; 82,6; 90,2; 83,4; 80,8; 84,6 dan 93,6 kg

Penyelesaian: susun hasil tsb dalam tabel berikut : Bobot babi pada akhir percobaan Ulangan Perlakuan T o t a l A B C 1 2 3 4 5 6 7 Rerata 70,2 64,0 88,4 61,0 84,6 82,6 87,6 73,0 90,2 77,0 79,0 83,4 68,6 81,0 80,8 73,2 78,6 84,6 57,4 71,0 93,6 495,0 531,2 603,6 70,71 75,89 86,23 1629,8

Menghitung Jumlah Kuadrat: F.K. = ─── = = 126488,0012 JKT = ∑ ∑ Yi j - FK = (70,2) + (61,0) + . . . . . . + (93,6) - FK = 1840,9981 JKP = ∑ ─── - FK (495,0) + (531,2) + (603,6) 7 = 873,6267 2 2 (1629,8) y .. n x t 7 x 3 t n 2 j = 1 i = 1 2 2 2 2 t Yi . n i = 1 2 2 2 - FK =

JKG = JKT - JKP = 1840,9981 - 873,6267 = 967,3714 Menghitung Kuadrat Tengah: JKP 873,6267 t – 1 3 - 1 JKG 967,3714 t (n – 1) 3 (7- 1) Menghitung Fhitung : Fhitung = = 8,13 KTP = = = 436,8134 KTG = = = 53,7429 436,8134 53,7429

Sidik Ragam pengaruh Perlakuan terhadap bobot babi S.K. d.b. J. K K.T. Fhitung F tabel 0,05 0,01 Perla- kuan Galat 2 18 873,6267 967,3714 436,8134 53,7429 8,13** 3,35 6,01 Total 20 1840,9981 Fhitung > Ftabel 0,01 terdapat perbedaan sangat nyata ↓ Tiga macam ransum pakan (A, B dan C) memberikan perbedaan yang sangat nyata terhadap bobot babi

Ransum pakan mana yang paling baik pengaruhnya terhadap bobot babi? → Perlu uji lebih lanjut dengan Uji Pembandingan Berganda: - Uji BNT - Uji BNJ KOEFISIEN KERAGAMAN: - Uji Jarak Duncan s √ KTG y. . y. . √53,7429 1629,8 7 x 3 (Kemungkinan terdapat kesalahan da- lam pengamatan atau pencatatan data) K.K.= x 100% = x 100% x 100% = 9,45% = < (15 – 20%)

Percobaan memakai R.A.L. → memungkinkan perlakuan perlakuan yang diberikan mempunyai jumlah ulangan tidak sama. Suatu percobaan dilaksanakan dengan Rancangan Acak Lengkap, dengan t perlakuan dan ulangan untuk: perlakuan 1 mendapat sebanyak n1 ulangan, perlakuan 2 mendapat sebanyak n2 ulangan, perlakuan 3 mendapat sebanyak n3 ulangan, . . perlakuan t mendapat sebanyak nt ulangan.

Perlakuan Total 1 2 . . . . . . . . t 1 Y1. Y2. . . . . . . Yt. Y.. Hasil tersebut sbb.: Ulangan Perlakuan Total 1 2 . . . . . . . . t 1 2 . Y11 Y21 . . . . . . Yt1 Y12 Y22 . . . . . . Yt2 . . . . Y2n . Y1n . Ytn T o t a l Y1. Y2. . . . . . . Yt. Y.. Rerata 2 1 t

Menghitung Derajat Bebas: d.b. perlakuan = t – 1 d.b. galat = ∑ ( ni – 1) = n1 + n2 + . . . + nt – t d.b. total = ∑ ni - 1 = n1 + n2 + . . . + nt – 1 Menghitung Jumlah Kuadrat; JKT = ∑ ∑ Yi j - JKG = JKT - JKP JKP = ∑ - t i = 1 t i = 1 2 Y. . ni t 2 t ∑ ni j =1 i = 1 i = 1 2 Y. . t 2 Yi . ni t ∑ ni i = 1 i = 1

Sidik Ragam untuk RAL dengan ulangan tak sama S.K. d.b. J.K. K.T. Fhitung Ftabel 0,05 0,01 Perla- kuan Galat t - 1 ∑ ( ni – 1) JKP JKG KTP KTG Total ∑ ni - 1 JKT t i = 1 t i = 1

Menghitung Kuadrat Tengah & Fhitung: JKP JKG t – 1 KTP = KTG = t ∑ ( ni – 1) KTP KTG i = 1 Fhitung = Contoh soal : Percobaan pada tikus, dengan 4 macam perlakuan ransum yang berbeda. Percobaan dilaksanakan dengan RAL. Pa- da akhir percobaan pertambahan berat badan tikus (dalam gram) sebagai berikut:

Pertambahan Berat Badan Tikus (gram) Ulangan Perlakuan A B C D T o t a l 1 2 3 4 5 6 7 8 3,42 3,17 3,34 3,64 3,96 3,63 3,72 3,93 3,87 3,38 3,81 3,77 4,19 3,47 3,66 4,18 3,58 3,39 3,55 4,21 3,76 3,41 3,51 3,88 3,84 3,55 3,96 3,44 3,91 Total 26,62 27,44 21,59 31,48 107,13 Rerata 3,80 3,43 3,60 3,94 14,77

Apakah terdapat perbedaan nyata dari pengaruh pembe- rian ke-4 macam ransum terhadap pertambahan berat badan tikus tersebut? Penyelesaian: Faktor Koreksi = FK = = = JKT = (3,42) + (3,96) + . . . . + (3,91) - FK = 2,061 JKP = + + + = JKG = 2,061 - 1,160 = 0,901 2 2 y. . (107,13) t 7 + 8 + 6 + 8 ∑ ni 2 i = 1 (107,13) 29 2 2 2 2 2 2 (26,62) (27,44) (21,59) 2 (31,48) 1,160 FK 8 6 7 8

S.K. d.b. J.K. K.T. Fhitung 3 0,387 2,99 Total 28 d.b. perlakuan = 4 – 1 = 3 d.b. galat = (7 + 8 + 6 + 8) – 4 = 25 d.b. total = ( 7 + 8 + 6 + 8) – 1 = 28 Sidik ragam: S.K. d.b. J.K. K.T. Fhitung F tabel 0,05 0,01 Perlakuan Galat 3 25 1,160 0,901 0,387 0,036 10,75 ** 2,99 4,68 Total 28 2,061 Kesimpulan: Ke-4 ransum tersebut berpengaruh sangat nya- ta terhadap pertambahan berat badan tikus.

Mencari Nilai Ftabel 0.05 dengan Interpolasi: Untuk: d.b.perlakuan = 12 dalam daftar tabel F d.b. sisa (galat) = 35 tidak tercantum ↓ d.b. d.b. perlakuan perlu dilakukan galat 10 12 interpolasi 0,05 0,01 1 . 2 . selisih dari 34 ke 35 = . . ¼ x 0,03 = 0,0075 . . = 0,01 34 selisih 1 2,05 4 35 ? Selisih 0,03 Jadi nilai dari 35 = 38 selisih 3 2,02 2,05 – 0,01 = 2,04