Integral dan Persamaan Diferensial Klik untuk melanjutkan

Slides:



Advertisements
Presentasi serupa
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -I” 2.
Advertisements

Analisis Rangkaian Listrik
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -II” 2.
Persamaan Diferensial
Selamat Datang Dalam Tutorial Ini 1. Petunjuk Dalam mengikuti tutorial jarak jauh ini, pertanyakanlah apakah yang disampaikan pada setiap langkah presenmtasi.
Analisis Rangkaian Listrik Klik untuk melanjutkan
SISTEM KOORDINAT.
Selamat Datang Dalam Tutorial Ini
Analisis Rangkaian Listrik
Selamat Datang Dalam Kuliah Terbuka Ini
Selamat Datang Dalam Tutorial Ini
Analisis Harmonisa Sinyal Nonsinus.
Selamat Datang Dalam Kuliah Terbuka Ini
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -II” 2.
Selamat Datang Dalam Kuliah Terbuka Ini
Analisis Rangkaian Listrik Oleh : Sudaryatno Sudirham
Diferensial dx dan dy.
FMIPA Universitas Indonesia
PERSAMAAN DIFERENSIAL TINGKAT SATU PANGKAT SATU (VARIABEL TERPISAH)
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -II” 2.
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Analisis Rangkaian Listrik di Kawasan s” 2.
Selamat Datang Dalam Tutorial Ini 1. Petunjuk Dalam mengikuti tutorial jarak jauh ini, pertanyakanlah apakah yang disampaikan pada setiap langkah presenmtasi.
Sistem Persamaan Linier Penulisan Dalam Bentuk Matriks
Integral (2).
Oleh: Sudaryatno Sudirham
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-9
Integral (1).
Persamaan Diferensial
Analisis Interval Aritmatika Interval.
Polinom dan Bangun Geometris.
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-10
Fisika Dasar I (FI-321) Topik hari ini (minggu 3)
Open Course Selamat Belajar.
Fungsi Polinom.
Turunan Fungsi-Fungsi Oleh: Sudaryatno Sudirham
Sistem Persamaan Linier
7. APLIKASI INTEGRAL MA1114 KALKULUS I.
Bab 8 Turunan 7 April 2017.
Sudaryatno Sudirham Matematika II.
MODUL VI : PENERAPAN INTEGRAL
Open Course Selamat Belajar.
Integral Lipat-Tiga.
Power System.
Selamat Datang Dalam Kuliah Terbuka Ini
Persamaan Diferensial
Gabungan Fungsi Linier
Prof.Dr.Ir.SRI REDJEKI MT
Integral (1).
Selamat Datang Dalam Kuliah Terbuka Ini
Sistem Persamaan Linier
Gejala Listrik Besaran Listrik
Selamat Datang Dalam Kuliah Terbuka Ini
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-3 1.
Respons Transien Rangkaian Orde 1
Analisis Rangkaian Listrik di Kawasan Waktu Model Piranti Sudaryatno Sudirham Klik untuk menlanjutkan.
Analisis Rangkaian Listrik Di Kawasan Waktu
Klik untuk melanjutkan
Circuit Analysis Time Domain #8.
Analisis Rangkaian Listrik
Sistem Persamaan Linier Oleh : Sudaryatno Sudirham
Pendahuluan Persamaan Diferensial
Magnetisme (2).
Sumber Medan Magnetik.
Lanjutan Elektrostatis
Diferensial dx dan dy.
Fisika Dasar (FR-302) Topik hari ini (minggu 4)
Diferensial dan Integral Oleh: Sudaryatno Sudirham
Bab 3 FLUKS LISTRIK, HUKUM GAUSS DAN TEOREMA DIVERGENSI
GERAK PADA BIDANG DATAR
7. APLIKASI INTEGRAL.
Transcript presentasi:

Integral dan Persamaan Diferensial Klik untuk melanjutkan Sudaryatno Sudirham Integral dan Persamaan Diferensial Klik untuk melanjutkan

dalam format pdf tersedia di dalam format pps beranimasi tersedia di Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org

Bahasan akan mencakup Integral Tak Tentu Integral Tentu Persamaan Diferensial

1. Integral Tak Tentu

Pengertian-Pengertian Misalkan dari suatu fungsi f(x) yang diketahui, kita diminta untuk mencari suatu fungsi y sedemikian rupa sehingga dalam rentang nilai x tertentu, misalnya a< x < b, dipenuhi persamaan Persamaan yang menyatakan turunan fungsi sebagai fungsi x seperti ini disebut persamaan diferensial. Contoh persamaan diferensial

Tinjau persamaan diferensial Suatu fungsi dikatakan merupakan solusi dari persamaan diferensial jika dalam rentang tertentu ia dapat diturunkan dan dapat memenuhi Karena maka fungsi juga merupakan solusi

Integrasi ruas kiri dan ruas kanan memberikan secara umum dapat dituliskan Integrasi ruas kiri dan ruas kanan memberikan secara umum Jadi integral dari diferensial suatu fungsi adalah fungsi itu sendiri ditambah suatu nilai tetapan. Integral semacam ini disebut integral tak tentu di mana masih ada nilai tetapan K yang harus dicari

Cari solusi persamaan diferensial Contoh: Cari solusi persamaan diferensial ubah ke dalam bentuk diferensial Kita tahu bahwa oleh karena itu

Carilah solusi persamaan Contoh: Carilah solusi persamaan kelompokkan peubah sehingga ruas kiri dan kanan mengandung peubah berbeda Jika kedua ruas diintegrasi

Dalam proses integrasi seperti di atas terasa adanya keharusan untuk memiliki kemampuan menduga jawaban. Beberapa hal tersebut di bawah ini dapat memperingan upaya pendugaan tersebut. 1. Integral dari suatu diferensial dy adalah y ditambah konstanta K. 2. Suatu konstanta yang berada di dalam tanda integral dapat dikeluarkan 3. Jika bilangan n  1, maka integral dari yndy diperoleh dengan menambah pangkat n dengan 1 menjadi (n + 1) dan membaginya dengan (n + 1).

Penggunaan Integral Tak Tentu Dalam integral tak tentu, terdapat suatu nilai K yang merupakan bilangan nyata sembarang. Ini berarti bahwa integral tak tentu memberikan hasil yang tidak tunggal melainkan banyak hasil yang tergantung dari berapa nilai yang dimiliki oleh K. 50 100 -5 -3 -1 1 3 5 K1 K2 K3 yi = 10x2 +Ki y x kurva adalah kurva bernilai banyak kurva adalah kurva bernilai tunggal 50 100 -5 -3 -1 1 3 5 x y = 10x2 y

Kecepatan sebuah benda bergerak dinyatakan sebagai Dalam pemanfaatan integral tak tentu, nilai K diperoleh dengan menerapkan apa yang disebut sebagai syarat awal atau kondisi awal. Contoh: Kecepatan sebuah benda bergerak dinyatakan sebagai kecepatan percepatan waktu Posisi benda pada waktu t = 0 adalah ; tentukanlah posisi benda pada t = 4. Kecepatan adalah laju perubahan jarak, Percepatan adalah laju perubahan kecepatan, . Kondisi awal: pada t = 0, s0 = 3 sehingga pada t = 4 posisi benda adalah

Luas Sebagai Suatu Integral

Luas Sebagai Suatu Integral Kita akan mencari luas bidang yang dibatasi oleh suatu kurva sumbu-x, garis vertikal x = p, dan x = q. Contoh: y x 2 Apx Apx y = f(x) =2 p x x+x q atau Kondisi awal (kondisi batas) adalah Apx = 0 untuk x = p atau

Kasus fungsi sembarang dengan syarat kontinyu dalam rentang p x x+x q y x y = f(x) f(x) f(x+x ) Apx Apx Apx bisa memiliki dua nilai tergantung dari pilihan Apx = f(x)x atau Apx = f(x+x)x x0 adalah suatu nilai x yang terletak antara x dan x+x Jika x  0:

2. Integral Tentu

Integral tentu merupakan integral yang batas-batas integrasinya jelas Integral tentu merupakan integral yang batas-batas integrasinya jelas. Konsep dasar integral tentu adalah luas bidang yang dipandang sebagai suatu limit. p x2 xk xk+1 xn q y x y = f(x) Bidang dibagi dalam segmen-segmen Luas bidang dihitung sebagai jumlah luas segmen Ada dua pendekatan dalam menghitung luas segmen p x2 xk xk+1 xn q y x y = f(x) p x2 xk xk+1 xn q y x y = f(x) Luas tiap segmen dihitung sebagai f(xk)xk Luas tiap segmen dihitung sebagai f(xk+x)xk

Jika x0k adalah nilai x di antara xk dan xk+1 maka p x2 xk xk+1 xn q y x y = f(x) Luas tiap segmen dihitung sebagai f(xk)xk Luas tiap segmen dihitung sebagai f(xk+x)xk Jika x0k adalah nilai x di antara xk dan xk+1 maka Jika xk  0 ketiga jumlah ini mendekati suatu nilai limit yang sama Nilai limit itu merupakan integral tentu

p x2 xk xk+1 xn q y x y = f(x) Luas bidang menjadi

Luas Bidang

Luas antara dan sumbu-x Definisi Apx adalah luas bidang yang dibatasi oleh y=f(x) dan sumbu-x dari p sampai x, yang merupakan jumlah luas bagian yang berada di atas sumbu-x dikurangi dengan luas bagian yang di bawah sumbu-x. Contoh: Luas antara dan sumbu-x dari x = 3 sampai x = +3. - 20 10 4 3 2 1 x

Contoh di atas menunjukkan bahwa dengan definisi mengenai Apx, formulasi tetap berlaku untuk kurva yang memiliki bagian baik di atas maupun di bawah sumbu-x p q y x A4 A1 A2 A3 y = f(x)

Luas Bidang Di Antara Dua Kurva berada di atas p q y x y1 y2 x+x Rentang dibagi dalam n segmen Apx jumlah semua segmen: Dengan membuat n menuju tak hingga sehingga x menuju nol kita sampai pada suatu limit

berapakah luas bidang yang dibatasi oleh y1 dan y2. Contoh: Jika dan berapakah luas bidang antara y1 dan y2 dari x1 = p = 2 sampai x2 = q = +3. Jika dan Contoh: berapakah luas bidang yang dibatasi oleh y1 dan y2. Terlebih dulu kita cari batas-batas integrasi yaitu nilai x pada perpotongan antara y1 dan y2. 2 4 -2 -1 1 y2 y1 di atas y x

berpakah luas bidang yang dibatasi oleh y1 dan y2. Contoh: Jika dan berpakah luas bidang yang dibatasi oleh y1 dan y2. Contoh: Batas integrasi adalah nilai x pada perpotongan kedua kurva -4 -2 2 4 -1 1 y1 di atas y2 y1 y2 y x

Penerapan Integral Contoh: Sebuah piranti menyerap daya 100 W pada tegangan konstan 200V. Berapakah energi yang diserap oleh piranti ini selama 8 jam ? Daya adalah laju perubahan energi. Jika daya diberi simbol p dan energi diberi simbol w, maka yang memberikan Perhatikan bahwa peubah bebas di sini adalah waktu, t. Kalau batas bawah dari waktu kita buat 0, maka batas atasnya adalah 8, dengan satuan jam. Dengan demikian maka energi yang diserap selama 8 jam adalah

Contoh: Arus yang melalui suatu piranti berubah terhadap waktu sebagai i(t) = 0,05 t ampere. Berapakah jumlah muatan yang dipindahkan melalui piranti ini antara t = 0 sampai t = 5 detik ? Arus i adalah laju perubahan transfer muatan, q. sehingga Jumlah muatan yang dipindahkan dalam 5 detik adalah

Volume Sebagai Suatu Integral

luas rata-rata irisan antara A(x) dan A(x+x). Berikut ini kita akan melihat penggunaan integral untuk menghitung volume. Balok Jika A(x) adalah luas irisan di sebelah kiri dan A(x+x) adalah luas irisan di sebelah kanan maka volume irisan V adalah x Volume balok V adalah luas rata-rata irisan antara A(x) dan A(x+x). Apabila x cukup tipis dan kita mengambil A(x) sebagai pengganti maka kita memperoleh pendekatan dari nilai V, yaitu: Jika x menuju nol dan A(x) kontinyu antara p dan q maka :

Jika garis OP memotong sumbu-y maka diperoleh kerucut terpotong Rotasi Bidang Segitiga Pada Sumbu-x y x x O Q P A(x) adalah luas lingkaran dengan jari-jari r(x); sedangkan r(x) memiliki persamaan garis OP. m : kemiringan garis OP h : jarak O-Q. Jika garis OP memotong sumbu-y maka diperoleh kerucut terpotong

Rotasi Bidang Sembarang y x x 0 a b f(x) Rotasi Gabungan Fungsi Linier y x x 0 a b f2(x) f1(x) f3(x) Fungsi f(x) kontinyu bagian demi bagian. Pada gambar di samping ini terdapat tiga rentang x dimana fungsi linier kontinyu. Kita dapat menghitung volume total sebagai jumlah volume dari tiga bagian.

3. Persamaan Diferensial Orde-1

Pengertian Persamaan diferensial adalah suatu persamaan di mana terdapat satu atau lebih turunan fungsi. Persamaan diferensial diklasifikasikan sebagai berikut: 1. Menurut jenis atau tipe: ada persamaan diferensial biasa dan persamaan diferensial parsial. Jenis yang kedua tidak termasuk pembahasan di sini, karena kita hanya meninjau fungsi dengan satu peubah bebas. 2. Menurut orde: orde persamaan diferensial adalah orde tertinggi turunan fungsi yang ada dalam persamaan. 3. Menurut derajat: derajat suatu persamaan diferensial adalah pangkat tertinggi dari turunan fungsi orde tertinggi. Contoh: adalah persamaan diferensial biasa, orde tiga, derajat dua.

Solusi Suatu fungsi y = f(x) dikatakan merupakan solusi dari suatu persamaan diferensial jika persamaan tersebut tetap terpenuhi dengan digantikannya y dan turunannya dalam persamaan tersebut oleh f(x) dan turunannya. adalah solusi dari persamaan Contoh: karena turunan adalah dan jika ini kita masukkan dalam persamaan akan kita peroleh Persamaan terpenuhi. Pada umumnya suatu persamaan orde n akan memiliki solusi yang mengandung n tetapan sembarang.

Persamaan Diferensial Orde Satu Dengan Peubah Yang Dapat Dipisahkan

Suku-suku terbentuk dari peubah yang berbeda Pemisahan Peubah Jika pemisahan peubah ini bisa dilakukan maka persamaan diferensial dapat kita tuliskan dalam bentuk Suku-suku terbentuk dari peubah yang berbeda Apabila kita lakukan integrasi, kita akan mendapatkan solusi umum dengan satu tetapan sembarang K, yaitu

Contoh: Persamaan ini dapat kita tuliskan yang kemudian dapat kita tuliskan sebagai persamaan dengan peubah terpisah Integrasi kedua ruas memberikan: sehingga atau

Contoh: Pemisahan peubah akan memberikan bentuk atau Integrasi kedua ruas: atau

Persamaan Diferensial Homogen Orde Satu

Persamaan Diferensial Homogen Orde Satu Suatu persamaan disebut homogen jika ia dapat dituliskan dalam bentuk Ini dapat dijadikan sebagai peubah bebas baru yang akan memberikan dan Pemisahan peubah: atau:

Contoh: Usahakan menjadi homogen Peubah baru v = y/x Peubah terpisah atau

Suku ke-dua ini berbentuk 1/x dan kita tahu bahwa Kita harus mencari solusi persamaan ini untuk mendapatkan v sebagai fungsi x. Suku ke-dua ini berbentuk 1/x dan kita tahu bahwa Kita coba hitung Hasil hitungan ini dapat digunakan untuk mengubah bentuk persamaan menjadi Integrasi ke-dua ruas:

Persamaan Diferensial Linier Orde Satu

Dalam persamaan diferensial linier, semua suku berderajat satu atau nol Oleh karena itu persamaan diferensial orde satu yang juga linier dapat kita tuliskan dalam bentuk P dan Q merupakan fungsi x atau tetapan Pembahasan akan dibatasi pada situasi dimana P adalah suatu tetapan. Hal ini kita lakukan karena pembahasan akan langsung dikaitkan dengan pemanfaatan praktis dalam analisis rangkaian listrik. Persamaan diferensial yang akan ditinjau dituliskan secara umum sebagai Dalam aplikasi pada analisis rangkaian listrik, f(t) tidak terlalu bervariasi. Mungkin ia bernilai 0, atau mempunyai bentuk sinyal utama yang hanya ada tiga, yaitu anak tangga, eksponensial, dan sinus. Kemungkinan lain adalah bahwa ia merupakan bentuk komposit yang merupakan gabungan dari bentuk utama.

Persamaan diferensial linier orde satu seperti ini biasa kita temui pada peristiwa transien (atau peristiwa peralihan) dalam rangkaian listrik. Cara yang akan kita gunakan untuk mencari solusi adalah cara pendugaan Peubah y adalah keluaran rangkaian (atau biasa disebut tanggapan rangkaian) yang dapat berupa tegangan ataupun arus sedangkan nilai a dan b ditentukan oleh nilai-nilai elemen yang membentuk rangkaian. Fungsi f(t) adalah masukan pada rangkaian yang dapat berupa tegangan ataupun arus dan disebut fungsi pemaksa atau fungsi penggerak. Persamaan diferensial linier mempunyai solusi total yang merupakan jumlah dari solusi khusus dan solusi homogen. Solusi khusus adalah fungsi yang dapat memenuhi persamaan yang diberikan, sedangkan solusi homogen adalah fungsi yang dapat memenuhi persamaan homogen

Hal ini dapat difahami karena jika f1(t) memenuhi persamaan yang diberikan dan fungsi f2(t) memenuhi persamaan homogen, maka y = (f1+f2) akan juga memenuhi persamaan yang diberikan, sebab Jadi y = (f1+f2) adalah solusi dari persamaan yang diberikan, dan kita sebut solusi total. Dengan kata lain solusi total adalah jumlah dari solusi khusus dan solusi homogen.

Solusi Homogen Persamaan homogen Jika ya adalah solusinya maka Integrasi kedua ruas memberikan sehingga Inilah solusi homogen

Jika solusi khusus adalah yp , maka Bentuk f(t) ini menentukan bagaimana bentuk yp. Dugaan bentuk-bentuk solusi yp yang tergantung dari f(t) ini dapat diperoleh karena hanya dengan bentuk-bentuk seperti itulah persamaan diferensial dapat dipenuhi Jika dugaan solusi total adalah Masih harus ditentukan melalui kondisi awal.

Contoh: Dari suatu analisis rangkaian diperoleh persamaan Carilah solusi total jika kondisi awal adalah v = 12 V. Persamaan ini merupakan persamaan homogen, f(t) = 0. Solusi khusus bernilai nol. Penerapan kondisi awal: Solusi total:

Contoh: Suatu analisis rangkaian memberikan persamaan Dengan kondisi awal v(0+) = 0 V , carilah tanggapan lengkap. Solusi homogen: Solusi khusus: karena f(t) = 12 Solusi total (dugaan): Penerapan kondisi awal: Solusi total:

Contoh: Pada kondisi awal v = 0 V, suatu analisis transien menghasilkan persamaan Carilah solusi total. Solusi homogen: Solusi khusus: Solusi total (dugaan): Penerapan kondisi awal: Solusi total :

Persamaan Diferensial Bahan Kuliah Terbuka Integral dan Persamaan Diferensial Sudaryatno Sudirham