KONSEP DASAR Fungsi dan Grafik

Slides:



Advertisements
Presentasi serupa
Persamaan Garis dan Grafik Kuadrat
Advertisements

Oleh : Novita Cahya Mahendra
SISTEM KOORDINAT.
Fungsi MATEMATIKA EKONOMI
MATEMATIKA EKONOMI DAN BISNIS FUNGSI DALAM EKONOMI Materi - 2 Oleh:
Pertidaksamaan Kelas X semester 1 SK / KD Indikator Materi Contoh
Widita Kurniasari Universitas Trunojoyo
Fungsi Kuadrat Grafik Fungsi Kuadrat Definisi 1.7 : Fungsi y = f (x) =
Fungsi PUSLITBANG PPPK PETRA SURABAYA 4/7/2017.
RELASI & FUNGSI Widita Kurniasari.
BAB 8 FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA HOME NEXT.
MODUL KULIAH MATEMATIKA TERAPAN
Persamaan Garis Singgung pada Kurva
1c YOUR NAME Fungsi Linear Yeni Puspita, SE., ME.
Pengantar Variabel dapat dibedakan menjadi 2, yaitu : Variabel kualitatif (sifatnya tidak tetap, berubah-ubah, yang tidak dapa diukur seperti cita rasa,
BAB 5 FUNGSI Kuliah ke 3.
Fungsi Non Linear Yeni Puspita, SE., ME.
HUBUNGAN ANTARA GARIS LURUS DAN PARABOLA
FUNGSI Cherrya Dhia Wenny, S.E..
By Eni Sumarminingsih, SSi, MM
SISTEM PERSAMAAN KUADRAT
MATEMATIKA BISNIS PERTEMUAN kedua Hani Hatimatunnisani, S. Si
BAB III FUNGSI.
PERSAMAAN GARIS PROGRAM STUDI PENDIDIKAN MATEMATIKA Oleh Kelompok 4 :
Fungsi WAHYU WIDODO..
Fungsi MATEMATIKA EKONOMI PTE 4109, Agribisnis UB.
TERAPAN FUNGSI DALAM EKONOMI DAN BISNIS
PENERAPAN FUNGSI LINIER
PROGRAM STUDI MANAJEMEN/AKUNTANSI UNIVERSITAS PGRI ADI BUANA SURABAYA
BAB I LIMIT & FUNGSI.
PERTEMUAN 3 FUNGSI.
MACAM-MACAM FUNGSI Matematika Ekonomi.
FUNGSI NON LINIER Matematika Ekonomi , by Agus Sukoco, ST, MM
Aplikasi fungsi linier
HUBUNGAN LINIER.
MATEMATIKA BISNIS Sri Nurmi Lubis, S. Si
KONSEP DASAR Fungsi dan Grafik
RELASI & FUNGSI Widita Kurniasari.
Kurva Linear dan Aplikasi dalam Ekonomi
Penerapan Fungsi Non Linier
Fungsi non linier SRI NURMI LUBIS, S.Si.
NILAI MUTLAK PERSAMAAN GARIS FUNGSI
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
MATEMATIKA EKONOMI.
Matematika SMA Kelas X Semester 1 Oleh : Ndaruworo
04 SESI 4 MATEMATIKA BISNIS Viciwati STl MSi.
FUNGSI PANGKAT DUA (FUNGSI KUADRAT)
Pertemuan ke-6 RELASI DAN FUNGSI.
MATEMATIKA EKONOMI Pertemuan 4: Fungsi Linier Dosen Pengampu MK:
Fungsi Persamaan, dan Pertidaksamaan Kuadrat
KONSEP DASAR Fungsi dan Grafik
MATEMATIKA EKONOMI Pertemuan 4: Fungsi Linier Dosen Pengampu MK:
Widita Kurniasari Universitas Trunojoyo
Fungsi Penerapan fungsi dalam bidang pertanian merupakan bagian yang sangat penting untuk dipelajari, karena model-model dalam matematika biasa disajikan.
DAN PENERAPANNYA DALAM
Widita Kurniasari Universitas Trunojoyo
RELASI & FUNGSI Modul 2 Juli 2006.
FUNGSI KUADRAT PERTEMUAN VIII
A. RELASI DAN FUNGSI Indikator : siswa dapat
MATEMATIKA EKONOMI FUNGSI DALAM EKONOMI DAN BISNIS.
MATEMATIKA EKONOMI FUNGSI LINIER (Pertemuan)
MATEMATIKA Fungsi dan Hubungan Linier
Widita Kurniasari Universitas Trunojoyo
RELASI & FUNGSI Widita Kurniasari.
Widita Kurniasari Universitas Trunojoyo
KALKULUS I Sistim Bilangan/fungsi
Widita Kurniasari Universitas Trunojoyo
RELASI & FUNGSI Modul 2 Juli 2006.
Widita Kurniasari Universitas Trunojoyo
RELASI & FUNGSI Widita Kurniasari.
Transcript presentasi:

KONSEP DASAR Fungsi dan Grafik Definisi : Fungsi adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu Notasi : f : A  B x  y = f (x) Ilustrasi : A B f Gambar fungsi y = f(x)

setiap anggota A harus habis terpasang dengan anggota B. ILUSTRASI FUNGSI Definisi : Misalkan A dan B dua himpunan takkosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN : setiap anggota A harus habis terpasang dengan anggota B. tidak boleh membentuk cabang seperti ini. A B

Contoh : A B Fungsi Bukan fungsi, sebab ada elemen A yang mempunyai 2 kawan. Bukan fungsi, sebab ada elemen A yang tidak mempunyai kawan.

Domain / daerah asal dari f(x), notasi Df , yaitu Daerah nilai / Range /Kodomain dari f(x) , notasi Rf , yaitu Himpunan titik di bidang, disebut grafik fungsi f Contoh : Misalkan , maka f(1) = 8, f(-2) = 5 Misalkan , maka

JENIS-JENIS FUNGSI FUNGSI FUNGSI NON ALJABAR FUNGSI ALJABAR ATAU TRANSSEDEN FUNGSI ALJABAR FUNGSI IRRASIONAL FUNGSI RASIONAL FUNGSI EKSPONEN FUNGSI LOGARITMA FUNGSI TRIGONOMETRI FUNGSI HIPERBOL FUNGSI POLINOM FUNGSI LINIER FUNGSI KUADRAT FUNGSI KUBIK FUNGSI BIKUADRAT FUNGSI PANGKAT

FUNGSI IRRASIONAL : Y = ( 1 + 2X – 3X2 + 4X3 + … + 12X11) 1/11 (Fungsi yang memiliki bentuk umum dimana n aalah bilangan bulat positif) FUNGSI POLINOM : Y = 1 + 2X – 3X2 + 4X3 + …+ 12X11 FUNGSI LINIER : Y = 1 + 2X FUNGSI KUADRAT : Y = 1 + 2X – 3X2 FUNGSI KUBIK : Y = 1 + 2X – 3X2 + 4X3 FUNGSI BIKUADRAT : Y = 1 + 2X – 3X2 + 4X3 + 5X4 (Fungsi polinom yang variabel bebasnya  memiliki pangkat paling tinggi adalah empat) FUNGSI PANGKAT : Y = X n , n = bulat positif FUNGSI EKSPONEN : Y = 2 X FUNGSI LOGARITMA : Y = n Log X FUNGSI HIPERBOLA : Y = X n , n = riil negatif

KEMIRINGAN DAN TITIK POTONG SUMBU Kemiringan (slope) dari fungsi linier dengan satu variabel bebas X adalah sama dengan perubahan dalam variabel terikat (dependent) dibagi dengan perubahan dalam variabel bebas (independent). Dan biasanya dilambangkan dengan huruf m. Jadi, ΔY Y2 – Y1 Kemiringan = m = atau ΔX X2 – X1 Y Y X X (a) Kemiringan positif (b) Kemiringan negatif Y Y X X (c) Kemiringan nol (d) Kemiringan tak tentu

BENTUK UMUM FUNGSI LINIER Y=a0 + a1X di mana a, tidak sama dengan nol. Bentuk ini disebut sebagai bentuk kemiringan-titik potong (slope-intercept). Bentuk seperti ini bila dilihat dari letak kedua variabel X dab Y, maka bentuk ini dapat disebut sebagai eksplisit. Karena variabel bebas X dan variabel terikat Y saling terpisah oleh tanda sama dengan (=)

MENENTUKAN PERSAMAAN GARIS (1). Metode Dua Titik Y – Y1 Y2 – Y1 = X – X1 X2 – X1 Y A (X2, Y2) A (X1, Y1) A (X, Y) X

Carilah persamaan garis yang melalui titik (3, 2) dan (4,6) Penyelesaian : X1 = 3, X2 = 4, Y1 = 2, dan Y2 = 6 Y – Y1 Y2 – Y1 X – X1 X2 – X1 Y – 2 6 – 2 X – 3 4 – 3 Y – 2 = (X – 3) Y – 2 = 4 (X – 3) Y = 4 X – 12 Y = 4 X - 10 Persamaan garis Y = 4x - 10 ini grafiknya ditunjukkan oleh gambar 4.3. = Y = Y = 4X - 10 6 – 2 4 – 3 X 1 2 3 5 (0,-10)

(2). METODE SATU TITIK DAN SATU KEMIRINGAN Y – Y1 = m (X – X1) Contoh Carilah persamaan garis yang melalui titik (6, 4) dan kemiringannya -2/3 Penyelesaian : Diketahui (X1, Y1) = (6, 4) dan m = - 2/3 Y – 4 = -2/3 (X – 6) Y = -2/3X + 4 + 4 Y = -2/3X + 8 Persamaan garis Y = -2/3X + 8 ini grafiknya ditunjukkan oleh gambar 4.4. Y (0,8) 8 6 Y = - 2/3 X + 8 4 2 (12,0) X

HUBUNGAN DUA GARIS LURUS y1=a0 + a1x dan y2=b0 + b1x a1 ≠ b1 ao ≠ b0 a1 = b1 ao ≠ b0 y1 y1 y2 y2 X X (a) Berpotongan (b) Sejajar Y Y a1 .b1 = -1 ao ≠ b0 y1 y1 a1 = b1 ao = b0 y2 y2 X X (c) Berimpit (d) Tegak Lurus

SISTEM PERSAMAAN LINIER PENYELESAIAN SISTEM PERSAMAAN LINIER: DUA PERSAMAAN DENGAN DUA VARIABEL METODE ELIMINASI Contoh 5.1. Carilah nilai-nilai dari variabel X dan Y yang dapat memenuhi kedua persamaan berikut ini : 3X – 2Y = 7 (5.1) 2X – 4Y = 10 (5.2) Penyelesaian : Variabel yang akan dieliminasikan adalah variabel Y. Karena variabel Y yang dipilih, maka Persamaan (5.1) harus dikalikan dengan konstanta 2, dan Persamaan (5.2) dikalikan dengan konstanta 1, sehingga kedua persamaan menjadi, 3X – 2Y = 7 (kalikan dengan 2), maka 6X – 4Y = 14 2X + 4Y = 10 (kalikan dengan 1), maka 2X + 4Y = 10 Karena kedua koefisien dari variabel Y tandanya berbeda, maka harus dijumlahkan, dan menjadi, 6X – 4Y = 14 2X + 4Y = 10 + 8X + 0 = 24 X = 3 Subtitusikan nilai X = 3 kedalam salah satu persamaan semula agar diperoleh nilai Y. Bila disubtitusikan pada Persamaan (5.1), maka akan menghasilkan, 3 (3) -2Y = 7 - 2Y = 7 – 9 Y = 1

METODE SUBSTITUSI Contoh 5.2. 3X – 2Y = 7 (5.1) 2X + 4Y = 10 (5.2) Misalkan variabel X yang dipilih pada persamaan (5.2), maka akan menjadi, 2X = 10 – 4Y X = 5 – 2Y (koefisien variabel X=1) Karena Persamaan (5.2)’ yang dipilih, maka subtitusikan kedalam persamaan pertama, sehingga menjadi, 3 (5 – 2Y) – 2Y = 7 15 – 6Y – 2Y = 7 15 – 8Y = 7 -8Y = 7 – 15 Y = 1 Substitusikan nilai Y = 1 ini kedalam salah satu persamaan mula-mula, misalkan Persamaan (5.1)’, sehingga memperoleh hasil, 3X – 2 (1) = 7 3X = 7 + 2 X = 3 Jadi, himpunan penyelesaian yang memenuhi kedua persamaan tersebut adalah himpunan pasangan urut (3.1).

Fungsi Kuadrat y = a x2 + bx + c D = b2 – 4ac Bentuk umum dari fungsi kuadrat adalah y = a x2 + bx + c Maka, D = b2 – 4ac Bentuk grafik dari fungsi kuadrat adalah PARABOLA x a + a - x1 x2

X1.2 = -------------------- Koordinat titik puncak diperoleh dgn rumus: Koordinat titik puncak diperoleh dgn rumus: - b - (b2 – 4ac) Titik puncak = ----- , --------------- 2a 4a -b ±√ (b2 – 4ac) X1.2 = -------------------- 2a Contoh: Jika fungsi kuadrat Y = X2 – 8X + 12 Carilah koordinat titik puncak dan gambarkan - b - (b2 – 4ac) Koordinat Titik puncak = ----- , --------------- 2a 4a

Untuk X = 0, maka Y = 12 Titik potong sumbu Y adalah (0,12) Contoh : Jika fungsi kuadrat Y = X2 – 8X + 12, carilah koordinat titik puncak dan gambarkanlah parabolanya? Penyelesaian : Koordinat titik puncak Untuk X = 0, maka Y = 12 Titik potong sumbu Y adalah (0,12) Untuk Y = 0, maka X2 – 8X + 12 = 0

Titik potong sumbu X adalah (2,0) dan (6,0) Titik potong sumbu X adalah (2,0) dan (6,0). Berdasarkan nilai-nilai penyelesaian dari titik puncak dan titik potong sumbu X dan Y, maka kurva parabolannya dapat digambarkan seperti 7.3.

Koordinat titik puncak = Y Koordinat titik puncak = (0,12) (8,12) Y = a0 = a1X + a2X2+a3X3 (2,0) x 2

Fungsi Kuadrat y = a x2 + bx + c D = b2 – 4ac Bentuk umum dari fungsi kuadrat adalah y = a x2 + bx + c Maka, D = b2 – 4ac Bentuk grafik dari fungsi kuadrat adalah PARABOLA x a + a - x1 x2

Titik Ekstrem Parabola Titik Maksimum dan titik Minimum Fungsi Maksimum dan minimum fungsi sangat ditentukan oleh nilai dari a y = a x2 + bx + c Titik Maksimum didapat jika a  , dan titik maksimumnya Titik Miminum didapat jika a  , dan titik minimumnya x1 x2 x x1 x2 a - a + Titik x1,2 dapat dicari dengan:

Posisi Parabola Jika D  , maka parabola memotong sb x pada titik (x1,0) dan (x2,0) x1 x2 x x1 x2 a + a - Jika D = 0 , maka parabola menyinggung sb x pada titik -b/2a x x -b/2a a - a + x Jika D , maka parabola TIDAK memotong sb x x a + a - Definit Positif Definit Negatif

FUNGSI PANGKAT TIGA dimana : a3tidak sama dengan nol. x Polinomial tingkat 3 dengan satu variabel bebas disebut sebagai kubik, dan mempunyai bentuk umum : Y = a0 + a1 X + a2X2 + a3X3 dimana : a3tidak sama dengan nol. fungsi kubik ini bila digambarkan dalam bidang koordinat Cartesius, kurvanya mempunyai dua lengkung (concave) yaitu : lengkung ke atas dan lengkung ke bawah, seperti tampak pada gambar di samping. Y Y = a0 = a1X + a2X2+a3X3 a0 x

PENERAPAN FUNGSI DIBIDANG Ekonomi Fungsi linier adalah suatu fungsi yang sangat sering digunakan oleh para ahli ekonomi dan bisnis dalam menganalisa dan memecahkan masalah-masalah ekonomi. Hal ini dikarenakan bahwa kebanyakan masalah ekonomi dan bisnis dapat disederhanakan atau diterjemahkan ke dalam model yang berbentuk linier.

Beberapa penerapan fungsi linier dalam bidang ekonomi dan bisnis adalah: a. Fungsi permintaan, fungsi penawaran dan keseimbangan pasar b. Keseimbangan Pasar Dua Macam Produk c. Pengaruh Pajak dan Subsidi Terhadap Keseimbangan Pasar. d. Fungsi biaya, fungsi pendapatan dan analisis Pulang Pokok (BEP=Break Even Point) e. Fungsi Konsumsi dan Tabungan f. Model Penentuan Pendapatan Nasional