Yeni Herdiyeni Departemen Ilmu Komputer

Slides:



Advertisements
Presentasi serupa
UKURAN NILAI PUSAT UKURAN NILAI PUSAT ADALAH UKURAN YG DAPAT MEWAKILI DATA SECARA KESELURUHAN JENIS UKURAN NILAI PUSAT : MEAN , MEDIAN, MODUS KUARTIL,
Advertisements

Teori Graf.
Statistika Deskriptif: Distribusi Proporsi
Kuswanto, Uji Normalitas  Untuk keperluan analisis selanjutnya, dalam statistika induktif harus diketahui model distribusinya  Dalam uji.
START.
Bab 4 Basic Probability Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc.
Wido Hanggoro ` Research and Development Department Indonesia Meteorological Climatological and Geophysical Agency.
Bulan maret 2012, nilai pewarnaan :
Tugas Praktikum 1 Dani Firdaus  1,12,23,34 Amanda  2,13,24,35 Dede  3,14,25,36 Gregorius  4,15,26,37 Mirza  5,16,27,38 M. Ari  6,17,28,39 Mughni.
Tugas: Perangkat Keras Komputer Versi:1.0.0 Materi: Installing Windows 98 Penyaji: Zulkarnaen NS 1.

1 Diagram berikut menyatakan jenis ekstrakurikuler di suatu SMK yang diikuti oleh 400 siswa. Persentase siswa yang tidak mengikuti ekstrakurikuler.
Korelasi dan Regresi Ganda
Bab 11A Nonparametrik: Data Frekuensi Bab 11A.
BADAN KOORDINASI KELUARGA BERENCANA NASIONAL DIREKTORAT PELAPORAN DAN STATISTIK DISAJIKAN PADA RADALGRAM JAKARTA, 4 AGUSTUS 2009.
LINKED LIST.
Input Specification1 untuk mendefinisikan semua file input yang digunakan dalam program (file yang akan digunakan telah didefinisikan pada coding F), mencakup.
Mari Kita Lihat Video Berikut ini.
Statistika Deskriptif
Bab 6B Distribusi Probabilitas Pensampelan
WORKSHOP INTERNAL SIM BOK
HITUNG INTEGRAL INTEGRAL TAK TENTU.
Uji Normalitas.
DISTRIBUSI FREKUENSI oleh Ratu Ilma Indra Putri. DEFINISI Pengelompokkan data menjadi tabulasi data dengan memakai kelas- kelas data dan dikaitkan dengan.
Rabu 23 Maret 2011Matematika Teknik 2 Pu Barisan Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat – sifat barisan Barisan Monoton.
Soal Latihan.
: : Sisa Waktu.
PENGANTAR SISTEM INFORMASI NURUL AINA MSP A.
Pengujian Hipotesis Parametrik 2
ANGGARAN PRODUKSI.
UKURAN PEMUSATAN DATA Sub Judul.
Fungsi Invers, Eksponensial, Logaritma, dan Trigonometri
Bab 16 Sekor Komposit dan Seleksi Sekor Komposi dan Seleksi
Lecture 9 Single Linked List Sandy Ardianto & Erick Pranata © Sekolah Tinggi Teknik Surabaya 1.
KONTROL ALUR EKSEKUSI PROGRAM
Bulan FEBRUARI 2012, nilai pewarnaan :
AREAL PARKIR PEMERINTAH KABUPATEN JEMBRANA
KINERJA SAMPAI DENGAN BULAN AGUSTUS 2013
Information Systems, Organizations, and Strategy
Aritmatika Bilangan Biner
2. Introduction to Algorithm and Programming
Bahan Kuliah IF2091 Struktur Diskrit
Graf.
PENGANTAR SISTEM INFORMASI NURUL AINA MSP A.
UTILITY THEORY.
USAHA DAN ENERGI ENTER Klik ENTER untuk mulai...
Statistika Deskriptif: Statistik Sampel
DISTRIBUSI FREKUENSI.
Bayesian: Multi-Parameter Model
Bersyukur.
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Statistika Deskriptif: Distribusi Proporsi
Dasar probabilitas.
• Perwakilan BKKBN Provinsi Sulawesi Tengah•
BAB2 QUEUE 6.3 & 7.3 NESTED LOOP.
Bahan Kuliah IF2120 Matematika Diskrit
7. RANTAI MARKOV WAKTU KONTINU (Kelahiran&Kematian Murni)
Pohon (bagian ke 6) Matematika Diskrit.
Korelasi dan Regresi Ganda
DISTRIBUSI PELUANG Pertemuan ke 5.
Pengantar sistem informasi Rahma dhania salamah msp.
Data Mining: Klasifikasi dan Prediksi Naive Bayesian & Bayesian Network . April 13, 2017.
Pertemuan 05 Sebaran Peubah Acak Diskrit
1 Pertemuan 10 Statistical Reasoning Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
Pert. 16. Menyimak lingkungan IS/IT saat ini
EXPERT SYSTEM By Daniel Damaris NS.
Statistika Chapter 4 Probability.
If you are an user, then you know how spam affects your account. In this article, we tell you how you can control spam’s in your ZOHO.
Website: Website Technologies.
Transcript presentasi:

Yeni Herdiyeni Departemen Ilmu Komputer Bayesian Networks Yeni Herdiyeni Departemen Ilmu Komputer

Overview Decision-theoretic techniques Applications to AI problems Explicit management of uncertainty and tradeoffs Probability theory Maximization of expected utility Applications to AI problems Diagnosis Expert systems Planning Learning

Course Contents Concepts in Probability Bayesian Networks Inference Random variables Basic properties (Bayes rule) Bayesian Networks Inference Applications

Probabilities Probability distribution P(X|x) X is a random variable Discrete Continuous x is background state of information

Discrete Random Variables Finite set of possible outcomes X binary:

Continuous Random Variable Probability distribution (density function) over continuous values 5 7

More Probabilities Joint Conditional Probability that both X=x and Y=y Probability that X=x given we know that Y=y

Rules of Probability Product Rule Marginalization X binary:

Bayes Rule

Course Contents Concepts in Probability Bayesian Networks Inference Basics Additional structure Knowledge acquisition Inference Decision making Learning networks from data Reasoning over time Applications

Bayesian networks Basics Structured representation Conditional independence Naïve Bayes model Independence facts

Naïve Bayes vs Bayesian Network Pada Naïve Bayes, mengabaikan korelasi antar variabel. Sedangkan pada Bayesian Network, variabel input bisa saling dependent.

Bayesian Networks P( S=no) 0.80 S=light) 0.15 S=heavy) 0.05 Smoking= Cancer P( S=no) 0.80 S=light) 0.15 S=heavy) 0.05 Smoking= no light heavy P( C=none) 0.96 0.88 0.60 C=benign) 0.03 0.08 0.25 C=malig) 0.01 0.04 0.15

Product Rule P(C,S) = P(C|S) P(S)

Marginalization P(Smoke) P(Cancer)

Bayes Rule Revisited Cancer= none benign malignant P( S=no) 0.821 0.522 0.421 S=light) 0.141 0.261 0.316 S=heavy) 0.037 0.217 0.263

A Bayesian Network Age Gender Exposure to Toxics Smoking Cancer Serum Calcium Lung Tumor

Independence Age and Gender are independent. P(A,G) = P(G)P(A) P(A|G) = P(A) A ^ G P(G|A) = P(G) G ^ A P(A,G) = P(G|A) P(A) = P(G)P(A) P(A,G) = P(A|G) P(G) = P(A)P(G)

Conditional Independence Cancer is independent of Age and Gender given Smoking. Age Gender Smoking P(C|A,G,S) = P(C|S) C ^ A,G | S Cancer

More Conditional Independence: Naïve Bayes Serum Calcium and Lung Tumor are dependent Cancer Serum Calcium is independent of Lung Tumor, given Cancer P(L|SC,C) = P(L|C) Serum Calcium Lung Tumor

More Conditional Independence: Explaining Away Exposure to Toxics and Smoking are independent Exposure to Toxics Smoking E ^ S Cancer Exposure to Toxics is dependent on Smoking, given Cancer P(E = heavy | C = malignant) > P(E = heavy | C = malignant, S=heavy)

Put it all together Smoking Gender Age Cancer Lung Tumor Serum Calcium Exposure to Toxics

General Product (Chain) Rule for Bayesian Networks Pai=parents(Xi)

Conditional Independence A variable (node) is conditionally independent of its non-descendants given its parents. Age Gender Non-Descendants Exposure to Toxics Smoking Parents Cancer is independent of Age and Gender given Exposure to Toxics and Smoking. Cancer Serum Calcium Lung Tumor Descendants

Another non-descendant Age Gender Cancer is independent of Diet given Exposure to Toxics and Smoking. Exposure to Toxics Smoking Diet Cancer Serum Calcium Lung Tumor

Bayesian Network Bayesian Network atau Belief Network atau Probabilistik Network adalah model grafik untuk merepresentasikan interaksi antar variabel. Bayesian Network digambarkan seperti graf yang terdiri dari simpul (node) dan busur (arc). Simpul menunjukkan variabel misal X beserta nilai probabilitasnya P(X) dan busur menunjukkan hubungan antar simpul. Jika ada hubungan dari simpul X ke simpul Y, ini mengindikasikan bahwa variabel X ada pengaruh terhadap variabel Y. Pengaruh ini dinyatakan dengan peluang bersyarat P(Y|X).

Bayesian Network - Latihan Yeni Herdiyeni

Bayesian Network Dari gambar tersebut dapat diketahui peluang gabungan dari P(R,W). Jika P(R) = 0.4, maka P(~R) = 0.6 dan jika P(~W|~R) = 0.8. Kaidah Bayes dapat digunakan untuk membuat diagnosa.

Bayesian Network Sebagai contoh jika diketahui bahwa rumput basah, maka peluang hujan dapat dihitung sebagai berikut :

Bayesian Network Berapa peluang rumput basah jika Springkler menyala (tidak diketahui hujan atau tidak)

Bayesian Network Berapa peluang Springkler menyala setelah diketahui rumput basah P(S|W)?

Bayesian Network Jika diketahui hujan, berapa peluang Springkler menyala?

Bayesian Network Bagaimana jika ada asumsi : Jika cuacanya mendung (cloudy), maka Springkler kemungkinan besar tidak menyala.

Bayesian Network Berapa peluang rumput basah jika diketahui cloudy?

Bayesian Network Berapa peluang rumput basah jika diketahui cloudy?

Latihan Jika ada seekor kucing yang suka berjalan di atap dan membuat keributan. Jika hujan, kucing tidak keluar. Berapa peluang kita akan mendengar kucing diatap jika cuaca Cloudy? P(F|C)

Course Contents Concepts in Probability Bayesian Networks Inference Decision making Learning networks from data Reasoning over time Applications

Inference Patterns of reasoning Basic inference Exact inference Exploiting structure Approximate inference

Predictive Inference How likely are elderly males Age Gender How likely are elderly males to get malignant cancer? Exposure to Toxics Smoking Cancer P(C=malignant | Age>60, Gender= male) Serum Calcium Lung Tumor

Combined Age Gender How likely is an elderly male patient with high Serum Calcium to have malignant cancer? Exposure to Toxics Smoking Cancer P(C=malignant | Age>60, Gender= male, Serum Calcium = high) Serum Calcium Lung Tumor

Explaining away Age Gender If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up. Exposure to Toxics If we then observe heavy smoking, the probability of exposure to toxics goes back down. Smoking Smoking Cancer Serum Calcium Lung Tumor

Inference in Belief Networks Find P(Q=q|E= e) Q the query variable E set of evidence variables P(q | e) = P(q, e) P(e) X1,…, Xn are network variables except Q, E P(q, e) = S P(q, e, x1,…, xn) x1,…, xn

Basic Inference A B P(b) = ?

Product Rule S C P(C,S) = P(C|S) P(S)

Marginalization P(Smoke) P(Cancer)

Basic Inference A B C P(b) = S P(a, b) = S P(b | a) P(a) P(c) = S P(c | b) P(b) P(c) = S P(a, b, c) b,a b,a = S P(c | b) P(b | a) P(a) = S P(c | b) S P(b | a) P(a) b a P(b)

Inference in trees Y1 Y2 X X P(x) = S P(x | y1, y2) P(y1, y2) because of independence of Y1, Y2: y1, y2 = S P(x | y1, y2) P(y1) P(y2)

Course Contents Concepts in Probability Bayesian Networks Inference Learning networks from data Reasoning over time Applications

Course Contents Concepts in Probability Bayesian Networks Inference Applications

Applications Medical expert systems Fault diagnosis Vista Pathfinder Parenting MSN Fault diagnosis Ricoh FIXIT Decision-theoretic troubleshooting Vista Collaborative filtering

Why use Bayesian Networks? Explicit management of uncertainty/tradeoffs Modularity implies maintainability Better, flexible, and robust recommendation strategies

Pathfinder Pathfinder is one of the first BN systems. It performs diagnosis of lymph-node diseases. It deals with over 60 diseases and 100 findings. Commercialized by Intellipath and Chapman Hall publishing and applied to about 20 tissue types.

Commercial system: Integration Expert System with advanced diagnostic capabilities uses key features to form the differential diagnosis recommends additional features to narrow the differential diagnosis recommends features needed to confirm the diagnosis explains correct and incorrect decisions Video atlases and text organized by organ system “Carousel Mode” to build customized lectures Anatomic Pathology Information System

On Parenting: Selecting problem Diagnostic indexing for Home Health site on Microsoft Network Enter symptoms for pediatric complaints Recommends multimedia content

On Parenting : MSN Original Multiple Fault Model

Single Fault approximation

On Parenting: Selecting problem

Performing diagnosis/indexing

RICOH Fixit Diagnostics and information retrieval

FIXIT: Ricoh copy machine

Online Troubleshooters

Define Problem

Gather Information

Get Recommendations

Vista Project: NASA Mission Control Decision-theoretic methods for display for high-stakes aerospace decisions

What is Collaborative Filtering? A way to find cool websites, news stories, music artists etc Uses data on the preferences of many users, not descriptions of the content. Firefly, Net Perceptions (GroupLens), and others offer this technology.

Bayesian Clustering for Collaborative Filtering Probabilistic summary of the data Reduces the number of parameters to represent a set of preferences Provides insight into usage patterns. Inference: P(Like title i | Like title j, Like title k)

Applying Bayesian clustering user classes ... title 1 title 2 title n class1 class2 ... title1 p(like)=0.2 p(like)=0.8 title2 p(like)=0.7 p(like)=0.1 title3 p(like)=0.99 p(like)=0.01 ...

Richer model Age Gender Likes soaps User class Watches Watches Watches Seinfeld Watches NYPD Blue Watches Power Rangers

What’s old? Decision theory & probability theory provide: principled models of belief and preference; techniques for: integrating evidence (conditioning); optimal decision making (max. expected utility); targeted information gathering (value of info.); parameter estimation from data.

What’s new? Bayesian networks exploit domain structure to allow compact representations of complex models. Knowledge Acquisition Learning Structured Representation Inference

Some Important AI Contributions Key technology for diagnosis. Better more coherent expert systems. New approach to planning & action modeling: planning using Markov decision problems; new framework for reinforcement learning; probabilistic solution to frame & qualification problems. New techniques for learning models from data.

What’s in our future? Better models for: Structured Representation Better models for: preferences & utilities; not-so-precise numerical probabilities. Inferring causality from data. More expressive representation languages: structured domains with multiple objects; levels of abstraction; reasoning about time; hybrid (continuous/discrete) models.