FOTOMETRI BINTANG I: Sistem Magnitudo & Indeks Warna

Slides:



Advertisements
Presentasi serupa
DESKRIPSI DATA Pokok bahasan ke-4.
Advertisements

Statistika Deskriptif: Distribusi Proporsi
TURUNAN/ DIFERENSIAL.
KINEMATIKA Kinematika adalah cabang ilmu Fisika yang membahas gerak benda tanpa memperhatikan penyebab gerak benda tersebut. Penyebab gerak yang sering.
Staf Pengajar Fisika Departemen Fisika, FMIPA, IPB
START.
STAF PENGAJAR FISIKA DEPT. FISIKA, FMIPA, IPB
Fotometri Bintang Keadaan fisis bintang dapat ditelaah baik dari spektrumnya maupun dari kuat cahayanya. Pengukuran kuat cahaya bintang ini disebut juga.
03/04/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
Mata Kuliah Teknik Digital TKE 113
4.5 Kapasitas Panas dan Kapasitas Panas Jenis
Selamat Datang Dalam Tutorial Ini
Menempatkan Pointer Q 6.3 & 7.3 NESTED LOOP.
Suku ke- n barisan aritmatika
GELOMBANG MEKANIK Transversal Longitudinal.
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Analisis Rangkaian Listrik di Kawasan s” 2.
Bab 11A Nonparametrik: Data Frekuensi Bab 11A.
Budi Dermawan Prodi Astronomi, FMIPA – ITB Kuliah Umum Astronomi, 14 April 2007, R GKU Timur – ITB Beyond Earth: Menelaah Belantara.
Latihan Soal Persamaan Linier Dua Variabel.
Mari Kita Lihat Video Berikut ini.
DND Magnitudo Bolometrik  Untuk itu didefinisikan magnitudo bolometrik (m bol ) yaitu magnitudo bintang yang diukur dalam seluruh λ.  Berbagai.
Sudaryatno Sudirham Bilangan Kompleks Klik untuk melanjutkan.
Bab 6B Distribusi Probabilitas Pensampelan
ANALISA NILAI KELAS A,B,C DIBUAT OLEH: NAMA: SALBIYAH UMININGSIH NIM:
Materi Kuliah Kalkulus II
Judhistira Aria Utama, M.Si. Jur. Pendidikan Fisika FPMIPA UPI
TURUNAN DIFERENSIAL Pertemuan ke
BARISAN DAN DERET ARITMETIKA
Tugas: Power Point Nama : cici indah sari NIM : DOSEN : suartin marzuki.
Terang Bintang Sebelum melangkah lebih jauh, akan kita tinjau terlebih dulu apa yang dimaksud dengan fotometri.
BESARAN & HUKUM MENDASAR DALAM ASTRONOMI
Persamaan Linier dua Variabel.
Selamat Datang Dalam Kuliah Terbuka Ini
Rabu 23 Maret 2011Matematika Teknik 2 Pu Barisan Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat – sifat barisan Barisan Monoton.
Diskripsi Mata Kuliah Memberikan gambaran dan dasar-dasar pengertian serta pola pikir yang logis sehubungan dengan barisan dan deret bilangan yang tersusun.
KPK dan FPB 1. KPK A. Tinjauan Kontekstual
Luas Daerah ( Integral ).
SEGI EMPAT 4/8/2017.
Gerak Bulan Fase-Fase Bulan Gerhana Gaya Pasang – Surut
DND-2006 Informasi yang diterima dari benda-benda langit berupa gelombang elektromagnet (cahaya)  untuk mempelajarinya diperlukan pengetahuan mengenai.
Fotometri Astronomi dan Koefisien Ekstingsi Atmosfer
Judhistira Aria Utama, M.Si. Jur. Pendidikan Fisika FPMIPA UPI
Difraksi celah tunggal, celah ganda, celah persegi , celah lingkaran, celah banyak, dan daya urai optik EKO NURSULISTIYO.
MEDAN LISTRIK.
Fungsi Invers, Eksponensial, Logaritma, dan Trigonometri
Matakuliah : D0564/Fisika Dasar Tahun : September 2005 Versi : 1/1
Magnitudo Bintang Kala malam yang cerah datang, coba Anda keluar rumah ke halaman terbuka,dan perhatikan kerlap-kerlip bintang nun jauh di langit gelap.
EKUIVALENSI LOGIKA PERTEMUAN KE-7 OLEH: SUHARMAWAN, S.Pd., S.Kom.
PROPOSAL PENGAJUAN INVESTASI BUDIDAYA LELE
Turunan Numerik Bahan Kuliah IF4058 Topik Khusus Informatika I
INTERFERENSI PERTEMUAN 08-09
ANUITAS BERTUMBUH DAN ANUITAS VARIABEL
Judhistira Aria Utama, M.Si. Jur. Pendidikan Fisika FPMIPA UPI
PELUANG SUATU KEJADIAN
Judhistira Aria Utama, M.Si. Jur. Pendidikan Fisika FPMIPA UPI
BINTANG DAN DINAMIKANYA
Judhistira Aria Utama, M.Si. Jur. Pendidikan Fisika FPMIPA UPI
SEGI EMPAT Oleh : ROHMAD F.F., S.Pd..
USAHA DAN ENERGI ENTER Klik ENTER untuk mulai...
Statistika Deskriptif: Distribusi Proporsi
FOTOMETRI OBJEK LANGIT
Modul Getaran, Gelombang, Bunyi
Bagaimana Siang dan Malam Berlaku?
WISNU HENDRO MARTONO,M.Sc
RADIASI BENDA HITAM.
Fotometri Bintang Keadaan fisis bintang dapat ditelaah baik dari spektrumnya maupun dari kuat cahayanya. Pengukuran kuat cahaya bintang ini disebut juga.
Judhistira Aria Utama, M.Si. Jur. Pendidikan Fisika FPMIPA UPI
Terang suatu bintang dalam astronomi dinyatakan dalam satuan magnitudo
Fotometri Bintang Oleh Departemen Astronomi FMIPA – ITB 2004
ASTROFISIKA.
Transcript presentasi:

FOTOMETRI BINTANG I: Sistem Magnitudo & Indeks Warna Persamaan indeks warna Kompetensi Dasar: Memahami sistem fotometri bintang Judhistira Aria Utama, M.Si. Lab. Bumi & Antariksa Jur. Pendidikan Fisika FPMIPA UPI

Terang Bintang Terang suatu bintang dalam astronomi dinyatakan dalam satuan magnitudo. Hipparchus (abad ke-2 SM) membagi terang bintang dalam 6 (enam) kelompok berdasarkan penampakannya dengan mata telanjang: Bintang paling terang tergolong magnitudo kesatu Bintang yang lebih lemah tergolong magnitudo kedua Dan seterusnya hingga bintang paling lemah yang masih bisa dilihat dengan mata termasuk magnitudo ke-6

Makin terang sebuah bintang, makin kecil magnitudonya 1 2 3 4 5 6 Latihan Dalam tabel bawah ini terdapat data magnitudo dari lima buah bintang. Tentukanlah bintang nomor berapa saja yang bisa diamati di langit malam dengan mata telanjang? Tentukan juga bintang mana yang paling terang dan bintang mana yang paling lemah, jelaskanlah! No. Magnitudo 1 6,5 2 5,2 3 7,3 4 -2,5 5 2,7

John Herschel mendapatkan bahwa kepekaan mata dalam menilai terang bintang bersifat logaritmik. Bintang yang bermagnitudo satu ternyata 100 kali lebih terang daripada bintang magnitudo enam. Berdasarkan kenyataan ini, Pogson (Norman Robert Pogson) pada tahun 1856 mendefinisikan skala satuan magnitudo secara lebih tegas. John Herschel (1792-1871)

m1 = magnitudo bintang ke-1 m2 = magnitudo bintang ke-2 Tinjau dua bintang: m1 = magnitudo bintang ke-1 m2 = magnitudo bintang ke-2 E1 = fluks bintang ke-1 E2 = fluks bintang ke-2 Skala Pogson didefinisikan sebagai: m1 – m2 = - 2,5 log (E1/E2) . . . . . . . . . .(4-1) E1/E2 = 2,512 -(m1 - m2) atau . . . . . . . . . .(4-2)

Jika m1 = 1 dan m2 = 6, maka dari pers. (4-2), Dengan skala Pogson ini dapat ditunjukkan bahwa bintang bermagnitudo 1 adalah 100 kali lebih terang daripada bintang bermagnitudo 6. Jika m1 = 1 dan m2 = 6, maka dari pers. (4-2), E1/E2 = 2,512 -(m1 - m2) = 2,512 = 2,512 = 100 -(1 - 6) 5 Jadi: E1 = 100 E2 Secara umum rumus Pogson dapat dituliskan : m = -2,5 log E + tetapan . . . . . . . . . (4-3) merupakan besaran lain untuk menyatakan fluks bintang yang diterima di Bumi per cm2 s-1

Harga tetapan ditentukan dengan mendefinisikan suatu titik nol. Awalnya sebagai standar magnitudo digunakan bintang Polaris yang tampak di semua Observatorium yang berada di belahan langit utara. Bintang Polaris ini diberi magnitudo 2 dan magnitudo bintang lainnya dinyatakan relatif terhadap magnitudo bintang Polaris. Tahun 1911, Pickering mendapatkan bahwa bintang Polaris, cahayanya berubah-ubah (bintang variabel) dan Pickering mengusulkan sebagai standar magnitudo digunakan kelompok bintang yang ada di sekitar kutub utara (North Polar Sequence).

Cara terbaik untuk mengukur magnitudo adalah dengan menggunakan bintang standar yang berada di sekitar bintang yang diamati karena perbedaan keadaan atmosfer Bumi tidak terlalu berpengaruh dalam pengukuran. Pada saat ini telah banyak bintang standar yang bisa digunakan untuk menentukan magnitudo sebuah bintang, baik yang berada di langit belahan utara, maupun di belahan langit selatan.

magnitudo semu sering disebut magnitudo. merupakan ukuran terang bintang yang diamati atau terang semu (ada faktor jarak dan penyerapan yang harus diperhitungkan). magnitudo semu sering disebut magnitudo. Faktor jarak: m = -2,5 log E + tetapan kuat cahaya sebenarnya . . . . . . (4-4) L / (4  d2) magnitudo semu E =

Dalam tabel di bawah diperlihatkan magnitudo semu beberapa benda langit. Nama Magnitudo Polaris 2,00 Vega 0,00 Regulus 1,50 Sirius -146 Pollux 1,16 Venus -4,0 Aldebaran 1,00 Jupiter -2,50 Betelgeuse 0,80 Bulan Purnama -12,60 Procyon 0,50 Matahari -26,70

magnitudo bintang yang diandaikan diamati dari jarak 10 pc. Untuk menyatakan luminositas atau kuat cahaya sebenarnya sebuah bintang, didefinisikan besaran magnitudo mutlak: magnitudo bintang yang diandaikan diamati dari jarak 10 pc. Skala Pogson untuk magnitudo mutlak ini adalah: M = -2,5 log E’ + tetapan . . . . . (4-5) L . . . . . (4-6) E’ = magnitudo mutlak 4  102 L . . . . . (4-7) Jadi M = -2,5 log + tetapan 4  102

Dari pers. (4-3) : m = -2,5 log E + tetapan Dari pers. (4-7) : M = -2,5 log E’ + tetapan . . . . . . . (4-8) m – M = -2,5 log E/E’ m – M = -5 + 5 log d . . . . . . . (4-9) modulus jarak d dalam pc Latihan Magnitudo mutlak sebuah bintang adalah M = 5 dan magnitudo semunya adalah m = 10. Jika absorpsi oleh materi antar bintang diabaikan, berapakah jarak bintang tersebut?

Dari rumus Pogson dapat ditentukan perbedaan magnitudo mutlak dua bintang yang luminositasnya masing-masing L1 dan L2, yaitu, L M = -2,5 log + tetapan Dari rumus pers (4-7) : 4  102 L1 Untuk bintang ke-1 : M1 = -2,5 log + tetapan 4  102 L2 Untuk bintang ke-2 : M2 = -2,5 log + tetapan 4  102 L1 M1 - M2 = -2,5 log . . . (4-10) L2

Soal-soal Latihan Andaikan sebuah bintang yang mirip dengan Matahari (temperatur dan luminositasnya sama) berjarak 100 juta kali lebih jauh dari jarak Bumi-Matahari. Berapa kali lebih terang atau lebih lemahkah bintang tersebut daripada Matahari? Berapakah magnitudo semu bintang tersebut? Apakah bintang ini bisa tampak dengan mata telanjang atau tidak? Jelaskan! Bintang A mempunyai magnitudo semu 3,26, dan bintang B 13,26. Bintang manakah yang terlihat lebih terang? Bagaimanakah perbandingan energi yang diterima pengamat dari kedua bintang tersebut?

Jika kedua bintang dalam soal nomor 2 memiliki magnitudo mutlak yang sama, bintang manakah yang berada di jarak lebih dekat ke pengamat? Berapakah perbandingan jarak keduanya? Andaikan magnitudo mutlak bintang dalam soal no.2 adalah adalah M = 8,26. Tentukanlah jarak setiap bintang dalam parsec! Energi yang diterima dari sebuah bintang yang berjarak 2 pc dan bermagnitudo semun 1,3 adalah 8 x 10-9 Watt/m2. Berapakah energi yang diterima pengamat dari sebuah bintang lain yang memiliki magnitudo semu 5,3?

Berapa kali lebih terangkah bintang A dibandingkan dengan bintang B? Tabel di bawah ini memperlihatkan magnitudo mutlak Matahari dan dua bintang yang lebih terang (bintang A) dan yang lebih lemah (bintang B) daripada Matahari. Objek M Matahari +5 Bintang A -10 Bintang B +15 Berapa kali lebih terangkah bintang A dibandingkan dengan bintang B? Jika luminostas Matahari adalah 3,86 x 1026 Watt, tentukanlah luminositas bintang A dan B!

Sistem Magnitudo Sebelum perkembangan fotografi, magnitudo bintang ditentukan dengan mata. Kepekaan mata untuk daerah panjang gelombang yang berbeda tidak sama. Mata peka untuk cahaya kuning hijau di daerah  = 5500 Å, karena itu magnitudo yang diukur pada daerah ini disebut magnitudo visual atau mvis.

Dengan berkembangnya fotografi, magnitudo bintang selanjutnya ditentukan secara fotografi. Pada awal fotografi, emulsi fotografi mempunyai kepekaan di daerah biru-ungu pada panjang gelombang sekitar 4500 Å. Magnitudo yang diukur di daerah ini disebut magnitudo fotografi atau mfot. Sebagai contoh, dibandingan hasil pengukuran magnitudo visual dengan magnitudo fotografi untuk bintang Rigel ( Orionis) dan Betelgeuse ( Orionis) yang berada di rasi Orion. Rigel berwarna biru sedangkan Betelgeuse berwarna merah.

Perbandingan bintang Rigel dan Betelgeuse. Rigel (berwarna biru) Betelgeuse (berwarna merah) Menurut Hukum Planck dan Wien, temperatur permukaan bintang Rigel lebih tinggi daripada Betelgeuse Temperatur permukaannya lebih rendah daripada Rigel Memancarkan lebih banyak cahaya biru daripada cahaya kuning Memancarkan lebih banyak cahaya kuning daripada cahaya biru Diamati secara fotografi akan tampak lebih terang daripada diamati secara visual (mvis besar dan mfot kecil). Diamati secara visual akan tampak lebih terang daripada diamati secara fotografi (mvis kecil dan mfot besar).

Jadi untuk suatu bintang, mvis berbeda dari mfot Jadi untuk suatu bintang, mvis berbeda dari mfot. Selisih kedua magnitudo tersebut, dinamakan indeks warna (Color Index – CI). CI = mfot  mvis . . . . . . . . . . .(4-11) Makin panas atau makin biru suatu bintang, semakin kecil indeks warnanya. Makin dingin atau makin merah suatu bintang, semakin besar indeks warnanya.

Distribusi Energi Bintang Rigel fot vis mfot = - 0,03 mfot - mvis = indeks warna mvis = 0,14 Intensitas CI = - 0,17  mvis besar, mfot kecil CI kecil

Distribusi Energi Bintang Betelgeus fot vis mfot = 2,14 mvis = 0,70 Intensitas CI = 1,44 mfot - mvis = indeks warna  mvis kecil, mfot besar CI besar

Perbandingan Distribusi Energi Bintang Rigel dan Betelgeus mfot mvis CI Rigel Intensitas CI Betelgeus DES Rigel DES Betelgeus 

Karena ada perbedaan antara mvis dan mfot, maka perlu diadakan pembakuan titik nol kedua magnitudo tersebut. mvis = - 2,5 log Evis + Cvis . . . . . . . . . . . . . (4-12) mfot= - 2,5 log Efot + Cfot . . . . . . . . . . . . . (4-13) Evis = fluks dalam daerah visual Efot= fluks dalam daerah fotografi Cvis dan Cfot adalah tetapan Tetapan Cvis dan Cfot dapat diambil sedemikian rupa sehingga untuk bintang deret utama yang spektrumnya termasuk kelas A0 (akan dibicarakan kemudian) memiliki harga mvis = mfot

Contoh bintang deret utama dengan kelas spektrum A0 adalah bintang Vega. Berdasarkan definisi, indeks warna bintang Vega adalah nol (CI = 0). Jadi bintang yang lebih biru atau lebih panas daripada Vega, misalnya bintang Rigel, indeks warnanya bernilai negatif. Bintang yang lebih merah atau lebih dingin daripada Vega, misalnya bintang Betelgeuse, indeks warnanya bernilai positif. Rigel : mfot = -0,03, mvis = 0,14 CI =  0,17 Betelgeuse : mfot = 2,14, mvis = 0,70 CI = 1,44

Dengan berkembangnya fotografi, selanjutnya dapat dibuat pelat foto yang peka terhadap daerah panjang gelombang lainnya, seperti kuning, merah bahkan inframerah. Pada tahun 1951, H.L. Johnson dan W.W. Morgan mengajukan sistem magnitudo yang disebut sistem UBV, yaitu U = magnitudo semu dalam daerah ultraviolet (ef = 3500 Å) B = magnitudo semu dalam daerah biru (ef = 4350 Å) V = magnitudo semu dalam daerah visual (ef = 5550 Å)

Daerah kepekaan pengukuran magnitudo U, B dan V 0,0 1,0 0,8 0,6 0,4 0,2 3000 4000 5000 6000 Kepekaan  (Å) B V Daerah kepekaan pengukuran magnitudo U, B dan V

Dalam sistem Johnson – Morgan (sistem UBV) Indeks warna adalah U-B dan B-V Untuk bintang panas, nilai B-V mengecil. Harga tetapan dalam pers. (4-3) m = -2,5 log E + tetapan diambil sedemikian rupa sehingga untuk bintang deret utama kelas A0 (misalnya bintang Vega) U = B = V CI = 0

Tentukan, bintang nomor berapakah yang paling terang? Berikan alasan! Latihan Tiga buah bintang diamati magnitudonya dalam  visual (V) dan biru (B) seperti yang diperlihatkan dalam tabel di bawah. No. B V 1 8,52 8,82 2 7,45 7,25 3 6,35 Tentukan, bintang nomor berapakah yang paling terang? Berikan alasan! Bintang yang dipilih sebagai bintang paling terang itu, dalam kenyataannya apakah benar-benar merupakan bintang yang paling terang? Jelaskan! Tentukanlah bintang mana yang paling panas dan mana yang paling dingin!

Berbagai Sistem Magnitudo Warna  Efektif (Å) Lebar Pita (Å) Sistem UGR dari Becker U Ultraviolet 3 690 500 – 700 G Hijau 4 680 R Merah 6380 Sistem UBV dari Johnson dan Morgan 3 500 800 – 1000 B Biru 4 350 V Kuning 5 550 Sistem Stromgren (Sistem ubvy) u  200 v Violet 4 100 b 4 670 y 5 470

Magnitudo Warna  Efektif (Å) Lebar Pita (Å) Sistem Stebbins dan Withford U Ultraviolet 3 550 600 - 1500 V Violet 4 200 B Biru 4 900 G Hijau 5 700 R Merah 7 200 I inframerah 10 300

Sistem dengan lebar pita (band width) yang sempit seperti sistem Stromgren dapat memberikan informasi yang lebih cermat, tetapi sistem ini memerlukan waktu pengamatan yang lebih lama. dalam suatu selang waktu, jumlah cahaya yang ditangkap detektor lebih sempit Dewasa ini pengamatan fotometri tidak lagi menggunakan pelat film, tetapi dilakukan dengan menggunakan kamera CCD (digital), sehingga untuk menentukan bermacam-macam sistem magnitudo hanya ditentukan oleh filter yang digunakan. !