Fisika Dasar IA : FI-1101 DINAMIKA ROTASI
Topik Hari Ini Kinematika Rotasi v.s. Linier (translasi) Dinamika Rotasi dan torka (torque) Usaha dan energi Momentum Angular Menggelinding
Rotational v.s. Linear Kinematics Angular Linear Untuk suatu titik pada jarak R dari sumbu rotasi: x = Rv = Ra = R
Contoh: Ingat bahwa = - 0.5 rad/s2. Pakai untuk memperoleh Sebuah roda berputar dengan kecepatan angular awal 0 = 500 rad/s. Pada t = 0 ia mulai melambat dengan laju 0.5 rad/s2. Berapa lama waktu yang diperlukan untuk berhenti? Ingat bahwa = - 0.5 rad/s2. Pakai untuk memperoleh t pada = 0 : Sehingga
Dinamika Rotasi dan Torka What makes it spin? Andaikan bahwa gaya yang beraksi pada suatu massa dibatasi untuk bergerak melingkar. Tinjau percepatan dalam arah pada suatu saat tertentu : a = r Gunakan Hk-II Newton dalam arah : F = ma = mr rF = mr2 ^ r ^ ^ F ^ F a m Kalikan dengan r : r
Dinamika Rotasi dan Torka … What makes it spin? rF = mr2 gunakan Definisikan torque (torka) : = rF. adalah gaya tangensial F dikalikan dengan lengan gaya r. Torka memiliki arah: + z untuk membuat sistem berputar berlawanan arah jarum jam. - z untuk membuat sistem berputar searah arah jarum jam. r ^ ^ F F a m r
Dinamika Rotasi dan Torka … What makes it spin? Sehingga untuk kumpulan banyak yg tersusun dalam konfigurasi yg tegar: i I Karena partikel-partikel terhubung secara tegar, mereka memiliki percepatan yang sama . m4 F1 F4 m1 r4 r1 m3 r2 r3 m2 F2 F3
Dinamika Rotasi dan Torka … What makes it spin? NET = I Ini adalah analogi rotasi untuk Hukum II Newton FNET = ma Torka merpakan analogi rotasi untuk gaya : The amount of “twist” provided by a force. Moment inersia I merupakan analogi untuk massa. Jika I lebih besar, lebih besar torka yg diperlukan untuk memperoleh percepatan angular tertentu. Satuan Torka kg m2/s2 = (kg m/s2) m = Nm.
Usaha Tinjau usaha oleh gaya F yang beraksi pada suatu massa dibatasi untuk bergerak mengitari suatu sumbu tetap . Untuk perpindahan kecil sekali d: dW = F.dr = FR d cos() = FR d cos(90-) = FR d sin() = FR sin() d dW = d Integrasikan: W = Analogi dengan W = F •r W akan negatif jika dan mempunyai arah berlawanan! F R d dr = R d axis
Usaha & Energi Kinetik Ingat Teorema Usaha / Energi Kinetic : K = WNET Ini benar secara umum, dan dapat diaplikasikan pada gerak rotasi sebagaimana halnya gerak translasi. Sehingga untuk suatu benda yang berputar terhadap suatu sumbu tetap:
Daya Rotasi Usaha yang dilakukan oleh suatu torka yang menyebabkan perpindahan diberikan oleh: Sehingga Daya (P) yang diberikan oleh suatu torka konstan adalah:
Contoh 1: Piringan & Tali Sebuah tali tak bermassa dililitkan 10 kali pada sebuah piringan dengan massa M = 40 g dan jari-jari R = 10 cm. Piringan ini berotasi tanpa gesekan terhadap suatu sumbu tetap yang melalui pusatnya. Tali ditarik dengan gaya F = 10 N sampai lepas semuanya dari piringan. (Asumsikan tali tidak slip, dan pada awalnya piringan tidak berputar). Seberapa cepat piringan berputar setelah tali lepas? F R M
Piringan & Tali... Kerja yang dilakukan adalah W = Torka = = RF (since = 90o) Perpindahan angular adalah 2 rad/rev x 10 rev. F R M Sehingga W = (.1 m)(10 N)(20rad) = 62.8 J
Piringan & Tali... WNET = W = 62.8 J = K IngatI untuk piringan terhadap sumbu pusanya diberikan oleh: M R sehingga = 792.5 rad/s
Momentum Angular (Momentum Sudut) Tool penting yang lain untuk menyelesaikan persoalan adalah Kekekalan Momentum. Kita telah mengenal: p = mv dan F = dp/dt. (1) Jika kita kalikan kedua sisi dari (1) dengan jari-jari r, diperoleh (dengan v = wr): t = r F = r dp/dt = d(r p)/dt = dL/dt Dimana L = r p, didefinisikan sebagai Momentum Sudut.
Kekekalan Momentum Sudut St = dL/dt Sama seperti F = dp/dt yang mengarah kepada kekekalan momentum jika tidak ada gaya luar, maka St = dL/dt mengarah kepada kekekalan momentum angular jika tidak ada torka luar. Ingat: p = mv, dan L = r p = r mv = r m vq = r m wr = mr2w = Iw
Contoh 2: Katrol dan Benda Jatuh Sebuah massa m yang dililitkan dengan tali pada sebuah katrol dengan jari-jari R yang menempel pada suatu roda yang berat. Momen Inersia dari katrol + roda adalah I. Tali tidak slip terhadap katrol. Mulai dari saat diam, hitung berapa lama waktu yang diperlukan oleh massa untuk jatuh sejauh L. I R T m a mg L
Katrol dan Benda Jatuh... Untuk massa yang bergantung: F = ma mg - T = ma Untuk katrol + roda: = I = TR = I Gunakan: a = R Sekarang hitung a dari persamaan di atas: I R T m a mg L
Katrol dan Benda Jatuh... Gunakan kinematika1-D , kita dapat menghitung waktu yang diperlukan oleh massa untuk jatuh sejauh L: I R T m dimana a mg L
Rotasi di sekitar sumbu yang bergerak Tali dililitkan pada suatu piringan dengan massa M dan jari-jari R. Piringan mula-mula diam pada permukaan horisontal yang licin. Tali ditarik dengan gaya F dan tidak slip. Tentukan panjang tali L yang terlepas setelah bergerak sejauh D? M R F Top view
Rotasi di sekitar sumbu yang bergerak... Pusat massa bergerak mengikuti F = MA Jarak yg ditempuh pusat massa : Piringan akan berputar terhadap CM mengikuti = I Sehingga perpindahan angular: M A R F
Rotasi di sekitar sumbu yang bergerak... Kita tahu jarak yang ditempuh CM dan sudut rotasi terhadap CM sebagai fungsi waktu: (a) (b) Panjang tali yg telah ditarik adalah L = R: Bagi (b) dengan (a): F F D L
Comments on CM acceleration: We just used = I for rotation about an axis through the CM even though the CM was accelerating! The CM is not an inertial reference frame! Is this OK?? (After all, we can only use F = ma in an inertial reference frame). YES! We can always write = I for an axis through the CM. This is true even if the CM is accelerating. We will prove this when we discuss angular momentum! F R M A
Menggelinding (Rolling) Suatu benda dengan massa M, jari-jari R, dan momen inersia I berputar ke bawah tanpa slip pada bidang miring dengan kemiringan terhadap bidang datar. Hitung percepatannya? SARAN: Tinjau gerak pusat massa dan rotasi terhadap pusat masaa secara terpisah ketika menyelesaikan persoalan ini I M R
Menggelinding… Gesekan static f menyebabkan menggelinding Ada dua kasus menggelinding: 1. Menggelinding tanpa tergelincir (menggelinding murni) 2. Menggelinding dan tergelincir secara serempak
Menggelinding... M y f R x Mg Gesekan static f menyebabkan menggelinding. Besaran ini tidak diketahui, harus diselesaikan. Pertama-tama tinjau dulu diagram benda bebas dari benda dan gunakan FNET = MaCM : Dalam arah x : Mg sin - f = Ma Sekarang tinjau rotasi terhadap pusat massa CM dan gunakan = I = Rf dan a = R M y x f R Mg
Menggelinding... Kita punya dua persamaan: Eliminasi untuk f: I A Untuk bola: M R
Contoh 3: Dua silinder menggelinding Dua bua silinder homogen terbuat dari aluminium. Silinder yang satu memiliki jari-jari dua kali yang lainnya. Jika keduanya diletakkan pada puncak bidang miring yang sama dan dilepaskan, mana yang paling cepat sampai di bawah? (a) Yang besar (b) Yang kecil (c) sama
Contoh 3: Dua silinder menggelinding .. Tinjau salah satu. Katakan jejari R, massa M dan jatuh dari ketinggian H. Konservasi energi: - DU = DK tetapi dan H
Contoh 3: Dua silinder menggelinding… Sehingga: Jawab, (c) tidak bergantung pada ukuran, Selama bentuknya sama!! H
Menggelincir untuk menggelinding Sebuah bola bowling bermassa M dan jejari R dipukul dengan kecepatan awal v0. Mula-mula tidak berputar. Setelah menggelincir dengan gesekan kinetik sejauh jarak D, bola akhirnya berputar tanpa slip dan mempunyai kecepatan baru vf. Koefisien gesekan kinetik antara bola dan bidang adalah . Hitung kecepatan akhir, vf, dari bola! vf= R v0 f = Mg D
Menggelincir untuk menggelinding... Selama tergelincir, gaya gesekan akan mempercepat bola dalam arah (-x) : F = -Mg = Ma sehingga a = -g Laju bola menjadi v = v0 - gt (a) Gesekan juga memberikan torka terhadap pusat massa bola. Gunakan = I dan ingat bahwa I = 2/5MR2 untuk bola pejal terhadap sumbu yang melalui pusat massa: (b) x v f= R v0 f = Mg D
Menggelincir untuk menggelinding... Kita punya 2 persamaan: Pakai (b) untuk menghitung t sebagai fungsi Substitusi ke (a) dan gunakan vf = R (kondisi menggelinding tanpa slip): (a) (b) Tidak bergantung pada , M, g!! x vf= R v0 f = Mg D
Pesawat Atwood dengan katrol bermassa Suatu pasangan massa digantung pada sebuah katrol massif ( bermassa) seperti pada gambar. Hitung percepatan dari pasangan massa. y x M Untuk massa yg digantung: F = ma -m1g + T1 = -m1a -m2g + T2 = m2a R T1 T2 a Untuk katrol = I T1R - T2R m2 m1 a m2g (Karena untuk piringan) m1g
Atwoods Machine dengan katrol bermassa... Kita punya 3 persamaan dengan 3 yang tidak diketahui (T1, T2, a). Selesaikan untuk a. -m1g + T1 = -m1a (1) -m2g + T2 = m2a (2) T1 - T2 (3) y x M R T1 T2 a m2 m2 m1 m1 a m2g m1g
Review Persamaan Gerak Rotasi Pada prinsipnya kita ganti F dengan t, m dengan I, v dengan w, a dengan a, dan p dengan L (dimana L adala momentum angular): S F = ma S t = Ia Work = = F ds Work = t dq Power = F v Power = t w KE = (1/2)mv2 KErotation = (1/2)Iw2 p = mv L = Iw S F = Dp/Dt S t = DL/Dt .