Pembelajaran Astronomi Bola Via Internet Suhardja D. Wiramihardja Endang Soegiartini Yayan Sugianto Program Studi Astronomi FMIPA Institut Teknologi Bandung 2006
Mata Kuliah AS 2210 Astronomi Bola (3 sks) untuk tingkat dua mahasiswa Program Studi Astronomi ITB. Materi: Fenomena Langit Gerak Langit Sistem Waktu Sistem Koordinat dan Transformasinya Koreksi Posisi Objek Langit (refraksi, aberasi, paralaks, presisi, dan nutasi) Teori Pergerakan Planet
PENDAHULUAN Menjelaskan posisi benda langit pada bola langit. Memilih sistem koordinat yang tepat untuk menjelaskan sebuah situasi. Melakukan transformasi antar sistem koordinat yang berbeda. Melakukan koreksi terhadap posisi pengamatan. Menjelaskan konsep gerak diri bintang, gerak planet.
Buku acuan Astronomy: Principle and Practise, part 2, Roy, A.E dan Clarke, D., 1988, Adam Hilger Textbook on Spherical Astronomy, Smart, W. M., 1980, Cambridge Univ. Press A Workbook for Astronomy, Waxman J., 1986, Cambridge University Press. Unfolding Our Universe, Nicolson, I., 1999, Cambridge University Press. An Introduction to Astronomy, Huffer, C.M., Trinklein, F.E., Bunge, M., 1967, Holt, Rinehart and Winston Inc.
Objek langit tampak bergerak pada bola langit dengan jarak tak terbatas. Bola merupakan objek tiga dimensi, tetapi penggambarannya dalam dua dimensi. Geometri bola diperlukan untuk menggambarkan permukaan sebuah bola: baik cara memahami maupun hubungan antar mereka.
Apa yang disebut dengan Astronomi Bola? Dilihat oleh mata, benda langit yang bertaburan di langit seolah melekat pada suatu setengah bola raksasa yaitu Bola Langit dengan diameter tak terhingga Posisi sebuah benda langit dinyatakan dengan arah dan bukan jarak, maka diperlukan suatu tata koordinat: koordinat 2 dimensi pada permukaan bola
Bab I Gerak Langit 1.1. Bola Langit Dilihat dengan mata, bintang-bintang menempel pada permukaan dalam suatu bola raksasa yang berpusat di Bumi. Bola ini, yang radiusnya tak terhingga, disebut bola langit. Posisi sebuah benda langit dinyatakan dengan arah, bukan dengan jarak. Diperlukan suatu tata koordinat: koordinat pada permukaan bola. Dalam sistem koordinat langit, posisi bintang-bintang hanya ditentukan oleh arah mereka antara satu dengan lainnya. Umpamanya, bintang S1 dan bintang S2 terpisah atau berjarak sudut 20 derajat.
Bola langit yang memperlihatkan jarak sudut Jarak sudut antara dua bintang, S1 dan S2, didefinisikan sebagai sudut S1OS2 = sudut S'1OS'2 atau S2OG1 = S'2OG'1. Tampak bahwa jarak ke bintang-bintang itu tidak diperhitungkan, seakan-akan mereka diproyeksikan pada bola langit di S'1 , S'2 dan G'1. Z N O S'1 * S1 S'2 * S2 G'1 G1 Bola langit yang memperlihatkan jarak sudut
KLU dan KLS Jika kita memproyeksikan kutub-kutub Bumi pada bola langit kita akan memperoleh dua buah titik yang disebut Kutub Langit Utara (KLU) dan Kutub Langit Selatan (KLS). * Polaris Bola langit yang berputar Kutub Langit Selatan (KLS) KLU Ekuator langit Bumi Bola langit yang menunjukkan KLU, KLS dan Equator langit. Bintang Polaris terletak dekat sekali dengan KLU
Gambar Pergerakan Bintang Polaris
Lingkaran harian bintang Gerak Langit Di Kutub. Jika kita berdiri di salah satu kutub, sumbu rotasi benda langit (sebenarnya Bumi) adalah poros KLU-KLS ini. Bintang-bintang akan tampak berputar melingkar terhadap titik tepat di atas kepala. Bintang tidak terbit dan tidak terbenam. Lintasan yang ditempuh bintang dalam bola langit ini disebut lingkaran harian. KLU * Lingkaran harian bintang Bumi Ekuator langit dan horizon Bola langit yang berputar KLS Bola langit dilihat dari Kutub Utara (KU)
* * Bola langit dilihat dari Ekuator Di Ekuator. Jika kita berdiri di ekuator, ekuator langit membentang melintas kepala kita, dari Timur ke Barat dan sumbu rotasi langit adalah garis dari Utara ke Selatan. Dari ekuator, bintang tampak terbit tegak lurus di horizon timur dan terbenam di horizon barat. Dari ekuator kita bisa melihat semua bintang. lingkaran harian bintang KLU * * KLS Bumi Bola langit Ekuator langit Bola langit dilihat dari Ekuator
Dalam kenyataan sebenarnya, Bumi bergerak mengitari Matahari. Ekliptika Dalam kenyataan sebenarnya, Bumi bergerak mengitari Matahari. September Desember Juni U S 23½ Ekliptika Maret Revolusi Bumi mengitari Matahari
Dari titik pandang Bumi, Matahari seolah-olah bergerak pada bola langit. 22 Jun 23 Sep Ekliptika Ekuator langit 21 Mar 22 Des Gerak Matahari Gerak tahunan Matahari pada bola langit
Sistem Koordinat Kutub Utara Greenwich, England Suatu tempat pada Bumi Meridian suatu tempat Greenwich, England Meridian Greenwich lintang Ekuator bujur Bumi Gambar 1.8 Sistem Lintang-Bujur
* Asensiorekta dan Deklinasi KLU Ekliptika Ekuator langit Bola langit KLU * Lingkaran jam bintang Ekliptika Vernal equinox Asensiorekta dan Deklinasi
Lintasan vertikal bintang KLU Meridian lokal pengamat Zenith Nadir U S Horizon B T * Lintasan vertikal bintang tinggi Azimuth Gambar 1.10 Sistem Horizon
Bab II Waktu 2.1. Standar Waktu Ada tiga satuan dasar waktu. Hari, yaitu panjang waktu yang diperlukan bumi untuk menyelesaikan satu kali rotasi. Tahun, yaitu interval waktu yang diperlukan bumi untuk menempuh satu putaran terhadap matahari. Bulan (month), yaitu waktu yang diperlukan bulan (moon) untuk menyelesaikan satu putaran terhadap bumi.
Ada dua macam hari Hari matahari (solar day), jika matahari sebagai acuan: interval waktu dari saat matahari terbit ke matahari terbit berikutnya atau matahari terbenam ke matahari terbenam berikutnya. Hari sideris (sidereal day), jika bintang sebagai acuan: interval waktu dari saat suatu bintang tertentu berada di atas kepala kita sampai bintang tersebut kembali berada di atas kepala kita lagi.
Perbedaan antara hari matahari dan hari sideris ke bintang Satu hari sideris = 23 jam 56 menit ~1 Satu hari matahari = 24 jam Bumi pada t2 Bumi pada t1 Perbedaan antara hari matahari dan hari sideris
2.2. Sudut Jam Z Meridian pengamat KLU Ekuator langit T U ♀ S Pengamat B Horizon Sudut jam : seberapa jauh sebuah bintang sudah meninggalkan meridian (titik sigma, ) ke arah Barat
2.3. Waktu Sideris Titik acuan waktu sideris adalah vernal equinox (titik = Aries). Waktu Sideris Lokal (WSL) didefinisikan sebagai sudut jam vernal equinox (SJ()) WSL = SJ() Hari sideris dimulai ketika vernal equinox ada pada meridian lokal (SJ()=0) dan berakhir ketika vernal equinox kembali melintas meridian (23 jam 56 menit waktu hari kemudian)
Definisi Waktu Sideris Lokal Lingkaran mencerminkan equator langit dan titik di pusat lingkaran adalah KLU. Panjang panah menyatakan sudut jam dari vernal equinox. Sudut jam diukur ke arah Barat (searah jarum jam bila dilihat dari Utara) dari titik sigma, , ke vernal equinox. WSL = SJ () Ekuator langit () KLU Vernal Equinox Definisi Waktu Sideris Lokal
Definisi lain dari Waktu Sideris Lokal SJ () () * WSL Ekuator langit Vernal quinox KLU Definisi lain dari Waktu Sideris Lokal
Karena ()=0, maka kita peroleh definisi pertama di atas, yaitu Sebuah bintang yang diperlihatkan dengan lingkaran jamnya, mempunyai asensiorekta (diukur ke arah Timur dari titik ) dan sudut jam, SJ (diukur ke arah Barat dari titik sigma, ). Kita lihat bahwa WSL = SJ() + () Jika (bintang) diganti dengan , kita mendapatkan, WSL = SJ() + () Karena ()=0, maka kita peroleh definisi pertama di atas, yaitu WSL = SJ()
Gambar 2.5 Siang sideris pada 23 September Z Meridian KLU Pengamat Horizon pengamat ☼ Matahari pada Autumnal Equinox Ekuator langit Gambar 2.5 Siang sideris pada 23 September
Gambar 2.6 Siang sideris pada 21 Maret Z KLU Matahari pada Vernal Equinox Pengamat ☼ Ekuator langit Horizon pengamat Gambar 2.6 Siang sideris pada 21 Maret
Gerak Semu Planet
http://mars.jpl.nasa.gov/allabout/nightsky/images/2003/whereLosAngeles_br.jpg
Bagaimana gerak Retrograde terjadi Orbit Bumi Bagaimana gerak Retrograde terjadi Orbit Mars
Konjungsi dan Oposisi beberapa planet Venus Bumi Mars Oposisi Konjungsi dan Oposisi beberapa planet
Orbit Bumi mengelilingi Matahari Hukum II Keppler Garis penghubung matahari-planet dalam selang waktu sama menyapu luas yang sama. Orbit Bumi mengelilingi Matahari
Fasa Bulan
Lintasan vertikal bintang KLU Meridian lokal pengamat Zenith Nadir U S Horizon B T * Lintasan vertikal bintang tinggi Azimuth
Arah Rotasi Bumi Pagi Sore Orbit Bumi Ke Matahari
http://ifa.hawaii.edu/~barnes/ASTR110L_F05/moonphases.html
Geometri Bola dan Geometri Bidang Datar Bila 2 garis tegak lurus garis ke 3, maka ke-2 garis tersebut sejajar Bila 2 garis tak sejajar, maka ke-2 garis itu akan memotong di satu titik Bidang Bola Bila 2 garis tegak lurus garis ke 3, maka ke 2 garis tersebut belum tentu sejajar Bila 2 garis tak sejajar, maka ke-2 garis itu belum tentu memotong di satu titik
Geometri Bola dibentuk oleh: lingkaran besar, lingkaran kecil, dan sudut-sudut bola Lingkaran besar: Lingkaran pada permukaan bola yang pusatnya berimpit dengan pusat bola membagi bola menjadi 2 bagian sama besar Lingkaran kecil: Lingkaran pada permukaan bola, tetapi pusatnya tidak berimpit dengan pusat bola Titik potong garis tengah yang tegak lurus bidang lingkaran besar dengan bola disebut kutub Bila 2 lingkaran besar berpotongan, maka sudut perpotongannya disebut sudut bola
Lingkaran kecil Lingkaran besar Kutub Lingkaran kecil Lingkaran besar Pusat Bola Kutub
Geometri Bola
Sudut bola adalah sudut yang dibentuk oleh perpotongan 2 lingkaran besar. Jika 3 buah lingkaran besar saling berpotongan satu dengan yang lainnya sehingga membentuk suatu bagian dengan 3 sudut, maka terbentuklah segitiga bola, yang mengikuti ketentuan sebagai berikut: 1. Jumlah 2 sudut bola selalu lebih besar dari sudut ke-3 2. Jumlah ketiga sudutnya selalu lebih besar dari 180 3. Tiap sudut besarnya selalu kurang dari 180
Sifat-sifat segitiga bola Sudut A, B, dan C adalah sudut bola; dan a, b, dan c adalah sisi-sisi segitiga bola ABC. 0 < (a + b + c) < 360 180 < (A + B + C) < 540 a + b > c, a + c > b, b + c > a a > b A > B ; a = b A = B Ekses sudut bola, yaitu selisih antara jumlah sudut-sudut A, B, dan C sebuah segitiga bola dengan radians (180°) adalah: E = A + B + C (rad) b a c
Formula Segitiga Bola Empat buah formula yang biasa digunakan adalah: Formula cosinus demikian pula Formula sinus Formula analog untuk cosinus Formula empat bagian b a c
Tata Koordinat Astronomi Komponen-komponen dasar pada Tata Koordinat Astronomi: Lingkaran Dasar Utama: yang membagi bola menjadi 2 belahan, belahan utara dan belahan selatan Kutub-kutub: pada diameter bola yang tegak lurus lingkaran dasar utama Lingkaran Dasar ke-2: lingkaran besar yang melalui kutub-kutub lingkaran dasar utama, tegak lurus lingkaran dasar utama Titik asal: titik acuan pengukuran besaran koordinat I Koordinat I(“absis”): dihitung dari titik asal sepanjang lingkaran dasar utama Koordinat II(“ordinat”): dihitung dari lingkaran dasar utama ke arah kutub
KU Lingkaran Dasar Kedua Pusat Bola Lingkaran Dasar Utama KS
Tata Koordinat Bumi Lingkaran Dasar Utama: lingkaran Ekuator Kutub-kutub: Kutub Utara (KU) dan Kutub Selatan (KS) Lingkaran Dasar ke-2: lingkaran besar yang melalui meridian pengamat Titik asal: titik potong ekuator dengan meridian Greenwich Koordinat I: bujur, atau , dihitung dari meridian Greenwich ke meridian pengamat: 0° < < 180° atau 0h < < 12h ke timur dan ke barat Koordinat II: lintang , dihitung: 0° < < 90° ke arah KU, dan -90° < < 0° ke arah KS
Tata Koordinat Bumi
Tata Koordinat Horison Lingkaran Dasar Utama: Bidang Horison Kutub-kutub: Titik Zenit (Z) dan Titik Nadir (N) Lingkaran Dasar ke-2: lingkaran besar yang melalui meridian pengamat Titik asal: Titik Utara. Titik-titik Utara, Selatan, Barat, dan Timur adalah titik kardinal Koordinat I: azimut, A diukur dari Utara ke Timur, 0° < A < 360° Koordinat II: tinggi bintang h, diukur dari lingkaran horison: 0° < h < 90° ke arah Z, dan -90° < h < 0° ke arah N
Tata Koordinat Horison
Tata Koordinat Ekuatorial I (HA-DEC) Lingkaran Dasar Utama: Ekuator Langit Kutub-kutub: Kutub Utara Langit (KUL) dan Kutub Selatan Langit (KSL) Lingkaran Dasar ke-2: meridian pengamat Titik asal: Titik , yang merupakan perpotongan meridian pengamat dengan lingkaran ekuator langit Koordinat I: sudut jam HA, diukur ke arah barat: 0h < HA < 24h Koordinat II: deklinasi, , diukur: 0° < < 90° ke arah KUL, dan -90° < < 0° ke arah KSL
Tata Koordinat Ekuatorial I
Tata Koordinat Ekuatorial II (RA-DEC) Lingkaran Dasar Utama: Lingkaran Ekuator Kutub-kutub: Kutub Utara Langit (KUL) dan Kutub Selatan Langit (KSL) Lingkaran Dasar ke-2: meridian pengamat Titik asal: Titik , yang merupakan perpotongan ekuator dan ekliptika Koordinat I: asensiorekta, , diukur dari titik ke arah timur: 0h < < 24h Koordinat II: deklinasi, , diukur 0° < < 90° ke arah KUL, dan -90° < < 0° ke arah KSL
Tata Koordinat Ekuatorial II (RA-DEC)
Tata Koordinat Ekliptika Lingkaran Dasar Utama: Bidang Ekliptika Kutub-kutub: Kutub Utara Ekliptika (KUE) dan Kutub Selatan Ekliptika (KSE) Titik asal: Titik Koordinat I: bujur ekliptika, , diukur dari titik ke arah timur: 0h < < 24h Koordinat II: lintang ekliptika, , diukur dari bidang ekliptika ke bintang : 0° < < 90° ke arah KUE, dan -90° < < 0° ke arah KSE
Tata Koordinat Ekliptika
Lintasan Harian Benda Langit Terbit, Terbenam, dan Kulminasi/Transit Setiap benda langit bergerak pada lingkaran kecil yang sejajar ekuator dan berjarak . Benda bergerak dari bawah horison ke atas horison di sebelah timur. Peristiwa ini disebut sebagai terbit. Lalu benda terbenam, yaitu bila benda bergerak dari atas horison ke bawah horison, di sebelah barat. Saat terbit atau terbenam, z = 90 dan h = 0. Besarnya HA (terbit/terbenam) menyatakan waktu yang ditempuh benda langit dari terbit sampai transit atas (HA = 0h = 0 ), dan dari transit atas sampai terbenam. Jadi 2 HA adalah lama benda langit di atas horison.
Bintang Sirkumpolar Bintang bisa diamati jika berada di atas horison. Ada bintang yang tidak pernah terbenam atau tidak pernah terbit. Bintang bintang ini disebut sebagai Bintang Sirkumpolar. Pada bintang sirkumpolar di atas horison, berlaku: z(transit bawah) 90 ; jika: 90 - , untuk belahan bumi utara - 90, untuk belahan bumi selatan Pada bintang sirkumpolar di bawah horison, berlaku: z(transit atas) 90 ; jika: - 90 , untuk belahan bumi utara 90 -, untuk belahan bumi selatan
Senja dan Fajar Pada saat Matahari terbenam, cahayanya masih dapat menerangi Bumi. Ketika Matahari berada 18 di bawah horison, pengaruh terang tersebut sudah hilang. Selang antara matahari terbit atau terbenam dengan saat jarak zenitnya 108 disebut sebagai fajar atau senja. z = 90, h = 0 terbit/terbenam z = 96, h = - 6 fajar/senja sipil z = 102, h = -12 fajar/senja nautika z = 108, h = -18 fajar/senja astronomis
Pergerakan Tahunan Matahari Matahari mengitari Bumi pada bidang ekliptika posisinya dalam koordinat ekliptika berubah terhadap waktu posisi pada koordinat ekuator juga berubah Dalam 1 tahun, berubah dari 0h sampai 24h dan berubah dari -23.27 sampai + 23.27 Posisi titik tetap
Posisi Matahari dalam koordinat ekuator II dan ekliptika
Posisi titik terhadap Matahari dalam peredaran harian dan tahunan Matahari
Refraksi Posisi benda langit yang tampak di langit sebenarnya berbeda dengan posisi fisiknya, salah satu sebab adalah karena efek refraksi. Cahaya yang bergerak dengan kecepatan cahaya akan mengubah bayangan benda yang melewati suatu medium.
Kecepatan cahaya di udara bergantung kepada Definisikan: Indeks refraksi, n, setiap medium transparan adalah 1/kecepatan cahaya di dalam medium. Kecepatan cahaya di udara bergantung kepada temperatur dan tekanannya, sehingga indeks refraksi udara bervariasi untuk tiap lapisan atmosfer yang berbeda.
Lapisan atmosfer terendah Refraksi Astronomi : yaitu refraksi terhadap sinar bintang akibat atmosfer bumi. Z N A X i1 800 km z Lapisan atmosfer terendah n Permukaan Bumi 150 km o
Refraksi di dalam atmosfer : Diandaikan atmosfer bumi terdiri dari n lapisan sejajar yang seragam dari permukaan bumi, dan mempunyai kecepatan vi yang berbeda untuk tiap lapisan (i dari 1 sampai n). Hukum Snell juga berlaku bagi refraksi untuk tiap lapisan: n1 sin i = n2 sin r, dengan : n1 dan n2 adalah indeks bias medium 1 atau 2, i adalah sudut datang, dan r adalah sudut bias.
Efek refraksi pada saat Matahari atau Bulan terbit/terbenam Saat Matahari atau Bulan terbit/terbenam, jarak zenit dari pusat kedua benda tersebut adalah 90. Refraksi yang terjadi saat itu disebut sebagai refraksi horisontal. Refraksi horisontal saat benda langit terbit/terbenam adalah 35. Jika jarak zenit = 90, maka jarak zenit benar adalah 9035. Misalkan H adalah sudut jam bila jarak zenit pusat Matahari 90, maka H+H adalah sudut jam pusat Matahari ketika pusat Matahari yang tampak, berada di horison, jadi z = 90 , dan z = 9035.
Bila Matahari dianggap terbenam ketika tepi atasnya berada di horison, dan semi diameter Matahari adalah 16, maka: Tabel 1. Lintang tampak dan sudut refraksi Lintang tampak Sudut refraksi 0 3521 1 2445 2 1824 3 1424 4 1143 10 518 30 141 60 034 90 000
Efek Refraksi pada asensiorekta dan deklinasi. = R sec sin = R cos dengan adalah sudut paralaktik.
Koreksi Semi diameter Pada saat Matahari terbenam, z = 90, h = 0, maka: jarak zenit piringan Matahari adalah: z 90 R(z=90) tinggi pusat Matahari adalah : h 0 R(z=90) Matahari dikatakan terbit jika batas atas piringan mulai muncul di horison, dan terbenam jika batas piringan sudah terbenam di horison, maka z dan h harus dikoreksi oleh semidiameter piringan Matahari , S , sehingga: z 90 R(z=90) S h 0 R(z=90) S Jadi saat Matahari atau Bulan terbit atau terbenam: h = 050 h = +008
Koreksi ketinggian di atas muka laut Bidang horison pengamat di Bumi bergantung kepada ketinggian pengamat. Jika pengamat berada pada ketinggian l (meter) dari muka laut, maka sudut kedalaman (angle of dip), , adalah : = 1.93l (dalam satuan menit busur). Jika efek refraksi diperhitungkan, maka: = 1.78l (dalam satuan menit busur). Jarak ke horison-laut, dituliskan dengan: d = 3.57l (dalam km). d = 3.87l (dalam km).