BETYARNINGTYAS CYNTHIA LA SARIMA MUH Tabrani Nuri NURWAHIDA VIEVIEN

Slides:



Advertisements
Presentasi serupa
Evaluasi Model Regresi
Advertisements

ANALISA BIVARIAT: KORELASI DAN REGRESI
MODEL REGRESI DENGAN DUA VARIABEL
Regresi Linear Berganda: Perkiraan Interval dan Pengujian Hipotesis
UJI HIPOTESIS.
ANALISIS REGRESI DAN KORELASI LINIER
L/O/G/O MODEL REGRESI. Keilmuan sosial mempunyai karakteristik berupa banyaknya variabel-variabelatau faktor-faktoryang saling mempengaruhi satu sama.
REGRESI LINIER BERGANDA
William J. Stevenson Operations Management 8 th edition PENYIMPANGANREGRESI Rosihan Asmara
Analisis Regresi Berganda & Pengujian Asumsi OLS
MODEL REGRESI LINIER GANDA
REGRESI LINIER SEDERHANA
BAB XI REGRESI LINEAR Regresi Linear.
HETEROSKEDASTISITAS (Heteroscedasticity)
Operations Management
Heteroskedastisitas Penyimpangan asumsi ketika ragam galat tidak konstan Ragam galat populasi di setiap Xi tidak sama Terkadang naik seiring dengan nilai.
KONSEP DAN PEMODELAN ARCH/GARCH
UJI ASUMSI KLASIK.
Analisis Data: Memeriksa Perbedaan
Uji Asumsi Klasik Pada Regresi Dengan Metode Kuadrat Terkecil (OLS)
KORELASI DAN REGRESI LINEAR SEDERHANA
PEMBAHASAN Hasil SPSS 21.
BAB XIII REGRESI BERGANDA.
KORELASI & REGRESI LINIER
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
UJI ASUMSI KLASIK.
LOGISTIC REGRESSION Logistic regression adalah regressi dengan binary untuk variabel dependen. Variabel dependen bersifat dikotomi dengan mengambil nilai.
PERTEMUAN 6 Teknik Analisis dan Penyajian Data
Korelasi/Regresi Linier
K O N S E P D A S A R A N A L I S I S R E G R E S I
Regresi Linear Dua Variabel
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
ANALISIS REGRESI & KORELASI
Richard Matias A.muh.Awal Ridha s Alfiani Nur Islami
REGRESI LINIER SEDERHANA
Presented by Kelompok 7 Mirah Midadan Richard Pasolang Reski Tasik
Dosen pengasuh: Moraida hasanah, S.Si.,M.Si
Analisis Korelasi dan Regresi linier
UJI ASUMSI KLASIK & GOODNESS OF FIT MODEL REGRESI LINEAR
Uji Asumsi Klasik Heteroskedastisitas
Bab 4 Estimasi Permintaan
EKONOMETRIKA Pertemuan 4,5 Estimasi Parameter Model Regresi
EKONOMETRIKA Pertemuan 7: Analisis Regresi Berganda Dosen Pengampu MK:
Muchdie, Ir, MS, Ph.D. FE-Uhamka
Heterokedastisitas Model ARACH dan GARCH
Analisis Regresi Berganda
Uji Asumsi Klasik MULTIKOLINIERITAS 2. AUTOKORELASI
EKONOMETRIKA Pertemuan 11: Pengujian Asumsi-asumsi Klasik (Bagian 2)
ANALISIS REGRESI BERGANDA
ANALISIS REGRESI & KORELASI
EKONOMETRIKA Pertemuan 10: Pengujian Asumsi-asumsi Klasik (Bagian 1)
Regresi Sederhana : Estimasi
Operations Management
EKONOMETRIKA Pertemuan 9: Pengujian Asumsi-asumsi Klasik (Bagian 1)
EKONOMETRIKA Pertemuan 9: Pengujian Asumsi-asumsi Klasik (Bagian 1)
EKONOMETRIKA Pertemuan 11: Pengujian Asumsi-asumsi Klasik (Bagian 2)
Operations Management
EKONOMETRIKA Pertemuan 4,5 Estimasi Parameter Model Regresi
Pengujian Asumsi OLS Aurokorelasi
Asumsi Non Autokorelasi galat
MUHAMMAD HAJARUL ASWAD
Disampaikan Pada Kuliah : Ekonometrika Terapan Jurusan Ekonomi Syariah
Uji Asumsi Analisis Regresi Berganda Manajemen Informasi Kesehatan
BAB 6 MULTIKOLINIERITAS
ANALISIS REGRESI & KORELASI
KORELASI & REGRESI LINIER
Analisis Regresi Berganda & Pengujian Asumsi OLS
EKONOMETRIKA Pertemuan 11: Pengujian Asumsi-asumsi Klasik (Bagian 1)
ANALISIS REGRESI DAN KORELASI
Korelasi dan Regresi Analisis.
Transcript presentasi:

BETYARNINGTYAS CYNTHIA LA SARIMA MUH Tabrani Nuri NURWAHIDA VIEVIEN KELOMPOK-I BETYARNINGTYAS CYNTHIA LA SARIMA MUH Tabrani Nuri NURWAHIDA VIEVIEN

HETEROSCEDASTISITAS PENDAHULUAN MENDETEKSI HETEROSCEDASTISITAS MENGATASI HETEROSCEDASTISITAS PENDAHULUAN

PENDAHULUAN PENDAHULUAN DEFINISI SEBAB & AKIBAT

MENDETEKSI HETEROSCEDASTISITAS CARA MENDETEKSI UJI PARK UJI KORELASI SPEARMAN UJI GLEJSER MELIHAT GRAFIK

MENGATASI HETEROSCEDASTISITAS CARA MENGATASI METODE GLS TRANSFORMASI DGN LOGARITMA TRANSFORMASI DGN 1/Xi TRANSFORMASI DGN TRANSFORMASI DGN 1/E(Yi)

PENDAHULUAN 1 DEFINISI: Homoskedastisitas merupakan salah satu asumsi dalam model regresi linier dimana distribusi error/residual sama. Homoskedastis berarti varians error bersyarat X merupakan suatu angka konstan, dilambangkan dengan

PENDAHULUAN 2 Heteroscedastisitas berarti adanya ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi. Atau dengan kata lain, heteroscedastisitas berarti varians error bersyarat X merupakan angka yg tidak konstan, dilambangkan dengan

PENDAHULUAN 3 FAKTOR PENYEBAB HETEROSCEDASTISITAS: 1. Error Learning Model Sebagaimana adanya proses perbaikan yang dilakukan unit-unit ekonomi, maka perilaku kesalahan menjadi lebih kecil dengan bertambahnya waktu. Dalam hal ini diharapkan σ2 menurun. Dengan penurunan ini menyebabkan varian yang diamati menjadi tidak konstan. Sehingga terjadi heteroskesdatisitas.

PENDAHULUAN 4 2. Perbaikan Dalam Pengumpulan Data Dengan meningkatnya mutu teknik pengumpulan data, maka diharapkan σ2 menurun. Misal sebuah bank yang mempunyai peralatan pemrosesan data yang canggih cenderung melakukan kesalahan yang lebih sedikit dibandingkan bank tanpa fasilitas tersebut, sehingga keragaman data atau variasinya akan cenderung turun yang menyebabkan variasinya menjadi tidak konstan

PENDAHULUAN 5 3. Kesalahan spesifikasi model Pemilihan model yang terbaik, dengan memasukkan variabel baru atau menghilangkan variabel yang sudah ada dalam model menyebabkan residual dari regresi akan memberikan hasil yang berbeda dan varians dari kesalahan tidak konstan.

PENDAHULUAN 6 AKIBAT HETEROSCEDASTISITAS pada estimator : 1. Estimator masih tidak bias 2.Estimator masih konsisten 3. Estimator tidak efisien yaitu varians dari estimator tidak minimum, kehilangan estimator yang bersifat B.L.U.E ( Best Linear Unbiased Estimator ), sehingga persamaan sulit diandalkan sebagai alat estimasi.

PENDAHULUAN 7 Jika tetap menggunakan estimator tersebut pada kondisi heteroskedastis, maka varian estimator koefisien regresi akan underestimate (menaksir terlalu rendah) atau overestimate (menaksir terlalu tinggi)

PENDETEKSIAN HETEROSCEDASTISITAS 1 MENGGUNAKAN GRAFIK Uji ini sangat bersifat subjektif karena tergantung pada subjektifitas tiap orang yang melihat grafik. Metode ini melihat pola titik-titik pada scatter plots regresi. Metodenya adalah dengan membuat grafik plot atau scatter antara Y yang telah diprediksi ( Y cap ) dan Residual (Yi – Ŷ).

PENDETEKSIAN HETEROSCEDASTISITAS 2 Tidak ada gejala heteroskedastisitas apabila tidak ada pola yang jelas, seperti titik-titik menyebar di atas dan di bawah angka 0 pada sumbu Y. Ada gejala heteroskedastisitas apabila ada pola tertentu yang jelas, seperti titik-titik membentuk pola tertentu yang teratur (bergelombang, melebar kemudian menyempit).

PENDETEKSIAN HETEROSCEDASTISITAS 3

PENDETEKSIAN HETEROSCEDASTISITAS 4 Dari gambar di atas, gambar a merupakan contoh homoskedastisitas, dan gambar b, c, d, dan e merupakan contoh heteroskedastisitas. Dapat kita lihat bahwa pada model bersifat homoskedastik, peningkatan nilai variabel independen pada sumbu X tidak diikuti dengan peningkatan residual. Sedangkan pada model bersifat heteroskedastik peningkatan nilai error pada sumbu X diikuti dengan keragaman yang meningkat pada sumbu Y.

PENDETEKSIAN HETEROSCEDASTISITAS 5 PENGUJIAN PARK Menggunakan fungsi karena umumnya tidak diketahui, maka Park menyarankan untuk menggunakan shg persamaan regresinya menjadi

PENDETEKSIAN HETEROSCEDASTISITAS 6 Jika koefisien regresi (β) signifikan secara statistik, maka dikatakan terjadi heteroskedasatisitas . *Uji Park hanya digunakan untuk satu variabel X Langkah-langkah pengujian : Lakukan regresi OLS dengan tidak memandang asumsi heteroskedastisitas Cari nilai ei = (Yi – Ŷ), kemudian regresikan ln ei sebagai variabel dependen, dan ln Xi sebagai variabel independen Lakukan Uji-F dengan menggunakan tabel Anova seperti biasa. Bandingkan dengan nilai F tabel

PENDETEKSIAN HETEROSCEDASTISITAS 7 Hipotesis Ho : (tidak terjadi heteroskedastisitas) Ha : (terjadi heteroskedastisitas) Tingkat signifikan α = 0,05 Statistik uji atau p-value

PENDETEKSIAN HETEROSCEDASTISITAS 8 Daerah kritis tolak Ho jika F* > (F* > 3,53) atau tolak Ho jika p-value < Penghitungan statistik uji Keputusan : karena p-value > α maka terima Ho Kesimpulan : dengan tingkat keyakinan 95% dapat disimpulkan bahwa tidak terjadi heteroskedastisitas. α

PENDETEKSIAN HETEROSCEDASTISITAS 9 PENGUJIAN KORELASI RANK SPEARMAN Langkah-Langkah Pengujian : 1. Hitung regresi Y terhadap X, dan hitung ei → (Yi – Ŷ) 2. Hitung rank dari |ei| dan Xi, selanjutnya hitung korelasi Spearman dimana di = selisih rank dari 2 karakteristik yang berbeda yaitu rank X dan rank |ei|.

PENDETEKSIAN HETEROSCEDASTISITAS 10 3. Lakukan langkah-langkah pengujian hipotesis dengan statistik uji :   Tolak H0 apabila t* > tα/2;n-2 *Uji Rank Spearman dapat digunakan apabila variabel X lebih dari satu, dilakukan dengan cara menghitung nilai t* untuk variabel X1, kemudian t* untuk variabel X2, dst.

PENDETEKSIAN HETEROSCEDASTISITAS 11 Hipotesis Ho : tidak terjadi heteroskedastisitas Ha : terjadi heteroskedastisitas Tingkat signifikan α = 0,05 Statistik uji dimana Daerah kritis Tolak H0 jika t* > tα/2;n-2 (t* > 2,048)

PENDETEKSIAN HETEROSKEDASTISITAS 12 PENGUJIAN GLEJSER Uji Glejser dilakukan dengan cara meregresikan nilai absolute dari residual dengan variabel independen yang diperkirakan memiliki varians terbesar. Tidak terjadi heteroskedastisitas, jika nilai t hitung lebih kecil dari ttabel dan nilai signifikansi lebih besar dari 0,05. Uji Hipotesis: H0: Tidak ada gejala heteroskedastisitas H1: Ada gejala heteroskedastisitas

PENDETEKSIAN HETEROSKEDASTISITAS 13 Tingkat signifikansi : 0,05 Daerah kritis : H0 ditolak apabila |t hitung| > | t tabel|. Statistik Uji : uji –t

MENGATASI HETEROSKEDASTISITAS Metode yang digunakan untuk mengatasi heteroskedastisitas pada dasarnya adalah metode agar mempersempit range nilai observasi terhadap nilai yang sebenarnya, sehingga diharapkan variasi error juga akan semakin kecil antar kelompok observasi. Dengan demikian, tidak mungkin terdapat cara dikalikan dengan X2 , dsb karena justru akan semakin memperbesar varians error. Kebanyakan cara yang dipakai adalah dikalikan , logaritma, dikalikan 1/Xi , dikalikan , dsb

MENGATASI HETEROSCEDASTISITAS 1 Metode Generalized Least Squares (GLS) Model Masing-masing dikalikan dengan

MENGATASI HETEROSCEDASTISITAS 2 Maka diperoleh transformed model sebagai berikut: Periksa apakah εi* homoskedastis ? Dengan demikian εi* homoskedastis.

MENGATASI HETEROSCEDASTISITAS 3 Cara ini menjamin hilangnya heteroskedastisitas; akan tetapi, prosedur ini susah diimplementasikan karena tidak mudah mencari varians dari tiap-tiap pengamatan. Varians dari tiap-tiap pengamatan ( ) dapat didekati dengan mencari varians dari errornya  Kita akan menaksir transformed model dengan OLS dan taksiran yang diperoleh akan BLUE, sedangkan model asli yang belum ditransformasikan (original model) bila ditaksir dengan OLS, taksirannya tidak BLUE. Prosedur yang menaksir transformed model dengan OLS disebut metode Generalized Least Square (GLS).

MENGATASI HETEROSCEDASTISITAS 4 Transformsi dengan Logaritma Transformasi ini ditujukan untuk memperkecil skala antar variabel bebas. Dengan semakin ‘sempitnya’ range nilai observasi, diharapkan variasi error juga tidak akan berbeda besar antar kelompok observasi. Model yang digunakan adalah:

MENGATASI HETEROSCEDASTISITAS 5 Transformasi dengan 1/Xi Asumsi : Transformasi menghasilkan

MENGATASI HETEROSCEDASTISITAS 6 Bukti varian telah konstan: Secara grafik, dengan sumbu Y untuk Y* dan sumbu X untuk X*, ciri-cirinya:

MENGATASI HETEROSCEDASTISITAS 7 Transformasi dengan Asumsi: Transformasi menghasilkan Bukti varian telah konstan

MENGATASI HETEROSCEDASTISITAS 8 Secara grafik, dengan sumbu Y untuk Y* dan sumbu X untuk X*, ciri-cirinya:

MENGATASI HETEROSCEDASTISITAS 9 Transformasi dengan 1/E(Yi) = Asumsi: Transformasi menghasilkan

MENGATASI HETEROSCEDASTISITAS 10 Bukti varian telah konstan Secara grafik, dengan sumbu Y untuk Y* dan sumbu X untuk X*, ciri-cirinya:

Trima kasih