MODEL LINIER Lia Yuliana, S.Si., MT. Tahun Akademik 2011/2012.

Slides:



Advertisements
Presentasi serupa
MATRIKS DAN DETERMINAN
Advertisements

Pengertian Tentang Matriks Operasi-Operasi Matriks
Matriks.
MATRIKS untuk kelas XII IPS
Eigen value & Eigen vektor
ALJABAR LINIER & MATRIKS
ALJABAR LINIER DAN MATRIKS
BAB 3. MATRIKS 3.1 MATRIKS Definisi: [Matriks]
Matrik dan operasi-operasinya
MATRIKS.
BAB 2 DETERMINAN.
Matriks & Operasinya Matriks invers
MATRIKS Trihastuti Agustinah.
design by budi murtiyasa ums 2008
Determinan Trihastuti Agustinah.
InversRANK MATRIKS.
Bab 3 MATRIKS.
Sistem Persamaan Linier
ALJABAR LINIER & MATRIKS
DETERMINAN 2.1. Definisi   DETERMINAN adalah suatu bilangan ril yang diperoleh dari suatu proses dengan aturan tertentu terhadap matriks bujur sangkar.
MATRIKS DEFINISI MATRIKS :
Widita Kurniasari, SE, ME Universitas Trunojoyo
BAB 6. INTEGRASI VEKTOR PENDAHULUAN
ALJABAR MATRIKS pertemuan 1 Oleh : L1153 Halim Agung,S.Kom
MATRIK Yulvi Zaika Jur. T.sipil FT Univ. Brawijaya
DETERMINAN DAN INVERSE MATRIKS.
OLEH : IR. INDRAWANI SINOEM, MS.
Aljabar Linier Pertemuan 1.
BY : ERVI COFRIYANTI, S.Si
BAB III DETERMINAN.
Matriks dan Transformasi Linier
Matriks.
PERMUTASI Merupakan suatu himpunan bilangan bulat {1,2,…,n} yang disusun dalam suatu urutan tanpa penghilangan atau pengulangan. Contoh : {1,2,3} ada 6.
MATRIKS.
MATRIX.
MATRIKS.
Review Review Aljabar Linear Matrix Operations Transpose
Sistem Persamaan Linier Oleh : Sudaryatno Sudirham
PERSAMAAN LINEAR MATRIK.
Matriks dan Determinan
ALJABAR LINIER.
MATRIKS Definisi : Matriks adalah sekumpulan bilangan ril atau bilangan kompleks yang disusun menurut baris dan kolom sehingga membentuk jajaran persegi.
MATRIKS DEFINISI MATRIKS :
DETERMINAN.
Widita Kurniasari, SE, ME Universitas Trunojoyo Madura
Aljabar Linear Pertemuan 9 Matrik Erna Sri Hartatik.
ALJABAR MATRIKS Bila kita mempunyai suatu sistem persamaan linier
ALJABAR LINIER & MATRIKS
Aljabar Linier Pertemuan 1.
MATRIKS DEFINISI MATRIKS :
Pertemuan 2 Aljabar Matriks (I)
TEKNIK KOMPUTASI 4. INVERS MATRIKS (II).
DETERMINAN Ronny Susetyoko Matematika 1.
Kelas XII Program IPA Semester 1
Aljabar Linear.
Matematika Informatika 1
Aljabar Linear.
MATRIKS dan DETERMINASI
Jenis Operasi dan Matriks Pertemuan 01
MATRIKS Materi - 7 Pengertian Matriks Operasi Matriks
Widita Kurniasari, SE, ME Universitas Trunojoyo
Widita Kurniasari, SE, ME Universitas Trunojoyo
Widita Kurniasari, SE, ME Universitas Trunojoyo
Aljabar Linier Pertemuan 1.
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER WEEK 3. Sifat-sifat Matriks
Widita Kurniasari, SE Bahan Ajar di Universitas Trunojoyo
Widita Kurniasari, SE, ME Universitas Trunojoyo
Pertemuan I : Pengertian Matriks Operasi Jenis-jenis Matriks
Bab 1.3 – 1.5 Matriks & Operasinya Matriks invers.
Transcript presentasi:

MODEL LINIER Lia Yuliana, S.Si., MT. Tahun Akademik 2011/2012

Pengenalan Model Linier Pendahuluan Myers (1991) Model merupakan abstraksi dari sebuah permasalahan, penjelasan teoritis dari sebuah fenomena. Tirta (2008) Model matematika dari suatu masalah adalah rumusan masalah dalam bentuk persamaan matematika Pemodelan matematika adalah proses menerjemahkan masalah dalam bahasa umum ke dalam bahasa atau persamaan matematika

Pengenalan Model Linier (2) Hubungan antar variabel dibagi menjadi 2: Hubungan secara fungsional (matematis) b. Hubungan secara statistik Model linier; model regresi linier, experimental design, time series Model non linier; (Draper and Smith, 1981) - intrinsik, model yang dapat ditransformasi menjadi linier - non intrinsik, model yang tidak dapat ditransformasi menjadi linier atau tetap non linier

Bentuk Umum Model Linier Myers (1991) Model linear menyangkut masalah statistik yang ketergantungannya terhadap parameter secara linear. Bentuk umum model linear adalah dimana y adalah variabel random disebut variabel respon; x1, x2, … , xk adalah variabel matematis yang nilainya dikontrol atau diamati;  adalah variabel random; 1 , 2 , … , k adalah konstanta.

Aljabar Linier Operasi matriks, partisi matriks, dan notasi vektor, Tranpose,determinan, rank Matriks kebalikan (inverse) Matriks kebalikan umum (generalized invers) atau matriks kebalikan bersyarat (conditional invers), Ortogonalitas, Akar Ciri, Matriks idempotent, trace

MATRIKS Definisi Susunan segi empat yang terdiri dari bilangan- bilangan real yang tersusun atas baris dan kolom m baris n kolom di katakan matriks A berukuran m x n

Baris ke-i dari A adalah : • Kolom ke-j dari A adalah : • Matriks A dapat juga ditulis : A = [aij] • Jika m = n maka dikatakan A matriks Bujur sangkar, dan bilangan a11, a22, …, ann disebut dengan diagonal utama

Jenis – jenis Matriks 1. Matriks Diagonal Matriks bujursangkar dengan elemen diluar diagonal utama adalah nol, yaitu aij = 0 untuk i  j 2. Matriks Skalar Matriks diagonal dengan elemen pada diagonal utama adalah sama, yaitu aij = c untuk i = j dan aij = 0 untuk i  j 3. Matriks Segitiga Atas Matriks bujursangkar dengan elemen dibawah diagonal utama adalah nol

Jenis – Jenis Matriks 4. Matriks Segitiga Bawah Matriks bujursangkar dengan elemen diatas diagonal utama adalah nol 5. Matriks Identitas Matriks diagonal dengan elemen pada diagonal utama adalah 1 , yaitu aij = 1 untuk i = j dan aij = 0 untuk i  j 6. Matriks Nol Matriks yang seluruh elemennya adalah nol.

Definisi: Misal X dan Y adalah matriks yang berukuran nxk. Misal xij dan yij merupakan elemen-elemen dalam matriks, i=1, 2, … , n dan j=1, 2, … , k. Maka X + Y merupakan matriks dimana elemen ke (i,j) adalah xij + yij X - Y merupakan matriks dimana elemen ke (i,j) adalah xij - yij cX, dimana c sebarang bilangan riil merupakan matriks dimana elemen ke (i,j) adalah cxij Perkalian matriks dengan skalar disebut perkalian skalar.

Definisi: Misal X adalah matriks yang berukuran nxk dan misal Y adalah matriks yang berukuran kxm. Perkalian XY didefinisikan sebagai matriks nxm dimana elemen ke (i,j) diberikan oleh

Sifat-sifat Operasi Matriks Jika X dan Y keduanya matriks berukuran nxk, maka X+Y=Y+X. (Penjumlahan matriks komutatif) Jika X, Y dan Z semuanya matriks berukuran nxk, maka X + ( Y + Z )= ( X + Y ) + Z. (Penjumlahan matriks asosiatif) Jika X, Y dan Z bersesuaian, maka X(YZ) = (XY)Z. (Perkalian matriks asosiatif) Jika X matriks berukuran nxk, Y dan Z matriks berukuran kxm. Maka X(Y+Z) = XY+XZ. (Perkalian matriks distributif kiri) Jika X matriks berukuran nxk, Y dan Z matriks berukuran mxn. Maka (Y+Z)X = YX+ZX. (Perkalian matriks distributif kanan)

Sifat-sifat Operasi Matriks (2) Jika c adalah bilangan riil, X matriks berukuran nxk dan Y matriks berukuran kxm, maka X(cY)=c(XY). (Bilangan riil dapat difaktorkan dari matriks) Jika a dan b adalah bilangan-bilangan riil, dan X matriks berukuran nxk, maka (a+b)X = aX+bX. (Matriks mendistribusi semua bilangan riil ) Jika X dan Y keduanya matriks berukuran nxk dan c adalah bilangan riil, maka c(X+Y)=cX+cY (Bilangan riil mendistribusi matriks) Misal X matriks berukuran nxk, terdapat matriks 0 (matriks nol) yang unik sedemikian hingga X+0=0+X=X. Jika X matriks berukuran nxk, terdapat matriks unik Y (negatif X), sedemikian hingga X+Y=0.

PARTISI MATRIKS Suatu matriks bisa dipartisikan menjadi SUB-MATRIKS dengan cara hanya mengikutkan beberapa baris atau kolom dari matriks aslinya. Aturan-aturan yang dipakai untuk mengoperasikan matriks partisi persis sama dengan mengoperasikan matriks biasa = dimana ;

Contoh sehingga

MATRIKS PARTISI BUJURSANGKAR Misalkan M adalah matriks partisi. Maka M disebut matriks partisi bujursangkar jika: M adalah matriks bujursangkar Partisi-partisinya membentuk bujursangkar Partisi-partisi diagonalnya juga merupakan matriks-matriks bujursangkar Dua syarat terakhir terjadi jika dan hanya jika garis horizontal dan vertikal sama banyaknya dan ditempatkan secara simetris.

Contoh: Matriks partisi A bukan merupakan matriks partisi bujursangkar, karena partisi-partisi diagonal kedua dan ketiganya bukan matriks bujursangkar. Sedangkan matriks partisi B adalah matriks partisi bujursangkar.

MATRIKS DIAGONAL PARTISI Jika M=[Aij] adalah matriks partisi bujursangkar sedemikian rupa sehingga partisi-partisi nondiagonalnyasemuanya adalah matriks nol, yaitu Aij=0 ketika i≠j, maka M disebut sebagai matriks diagonal partisi. Dapat dituliskan juga sebagai: M=diag(A11, A22, … , Ann) atau M=A11  A22  …  Ann Secara analog, matriks partisi bujursangkar disebut matriks segitiga atas partisi jika partisi-partisi yang berada di bawah diagonal adalah nol, dan disebut matriks segitiga bawah partisi jika partisi-partisi yang berada di atas diagonal adalah nol.

Contoh: A adalah matriks segitiga atas karena partisi- partisi yang berada di bawah diagonal adalah partisi nol B adalah matriks segitiga bawah karena partisi- partisi yang berada di atas diagonal adalah partisi nol C adalah matriks diagonal karena partisi- partisi di atas dan di bawah diagonal adalah partisi nol D bukan merupakan matriks segitiga atas maupun bawah. Tidak ada penyekat D lain yang akan mengubahnya menjadi matriks segitiga atas partisi maupun matriks segitiga bawah partisi

TRANSPOSE DAN NOTASI VEKTOR Definisi Misal X adalah matriks nxk. Transpose dari X dinotasikan X’ merupakan matriks kxn yang diperoleh dari penukaran baris dan kolom matriks X. Sifat-sifat Transpose Misal X matriks nxk dan c bilangan riil, maka (cX)’=cX’ Misal X dan Y matriks nxk, maka (XY)’= X’ Y’ Misal X matriks nxk, maka (X’)’=X Misal X matriks nxk dan Y matriks kxm, maka (XY)’=Y’X’

Teorema Misal Maka X’X merupakan matriks simetri kxk dari jumlah kuadrat dan jumlah perkalian silang. Sehingga,

Teorema Misal Maka Karena x’x merupakan matriks 1x1, notasi matriks tidak diperlukan. Hasilnya adalah jumlah kuadrat dari elemen-elemen x. Dimana x1, x2, ... , xn merupakan nilai numerik dan x’x merupakan bilangan riil.

Teorema Misal Maka x’x merupakan matriks simetri dari perkalian kuadrat dan perkalian silang.

INVERS MATRIKS Definisi Misal Ip merupakan matriks diagonal pxp Matriks Ik berukuran kxk disebut identitas kanan untuk setiap himpunan matriks berukuran nxk Matriks In berukuran nxn disebut identitas kiri untuk setiap himpunan matriks berukuran nxk Jika n=k maka In = Ik = I disebut identitas untuk setiap himpunan matriks berukuran nxn

Definisi Misal X adalah matriks kxk. Invers dari X dinotasikan X-1 merupakan matriks kxk sedemikian hingga XX-1 =X-1X =I Jika matriks ada, maka X disebut invertible atau nonsingular, selain itu matriks disebut noninvertible atau singular. Sifat-sifat invers Jika X nonsingular, maka X-1 nonsingular dan (X-1)-1=X Jika X dan Y keduanya nonsingular berukuran kxk, maka XY nonsingular dan (XY)-1=Y-1X-1 Jika X nonsingular, maka X’ nonsingular dan (X’)-1=(X-1)’

ORTOGONALITAS Definisi Misal X merupakan matriks kxk sedemikian hingga X’X=I. Maka X disebut ortogonal. Misal x dan y merupakan vektor nx1. Jika Maka x dan y dikatakan ortogonal. Misal x merupakan vektor nx1. Panjang x dinotasikan adalah

ORTOGONALITAS (2) Definisi Misal {x1, x2, ... ,xk} merupakan himpunan vektor ortogonal berukuran nx1. Jika masing-masing vektor mempunyai panjang maka vektor-vektor membentuk himpunan ortonormal. Teorema Misal X merupakan matriks kxk, X ortogonal jika hanya jika kolom-kolomnya merupakan himpunan ortonormal.

NILAI EIGEN Definisi Misal A merupakan matriks kxk dan x merupakan vektor taknol berukuran kx1. Nilai eigen atau akar ciri dari A adalah bilangan  sedemikian hingga Ax = x Vektor x yang memenuhi persamaan ini disebut vektor eigen. Contoh Diketahui tentukan nilai eigen dan vektor eigen dari matriks tersebut

NILAI EIGEN (2) Sifat-sifat nilai Eigen Jika A merupakan matriks simetri kxk, maka nilai eigen dari A semuanya bilangan riil Jika A merupakan matriks kxk dan C matriks ortogonal kxk, maka nilai eigen C’AC sama dengan nilai eigen A. Jika A merupakan matriks simetri kxk, maka vektor eigen yang diperoleh dari nilai eigen matriks A adalah ortogonal.

NILAI EIGEN (3) Teorema Misal A merupakan matriks kxk, maka matriks ortogonal P ada sedemikian hingga Dimana i untuk i = 1, 2, ... , k merupakan nilai eigen dari A

RANK MATRIKS Definisi Misal {x1, x2, ... ,xk} merupakan himpunan k vektor kolom. Jika bilangan riil a1, a2, ... , ak tidak semuanya nol sedemikian hingga ada, maka vektor x1, x2, ... , xk disebut bergantung linier. Selain itu disebut bebas linier. Misal X matriks berukuran nxk, setiap kolom dari matriks merupakan vektor kolom. Matriks X dalam bentuk vektor kolom ditulis X = [x1 x2 x3 ... xk]. Rank dari X, dinyatakan dengan r(X) didefinisikan sebagai jumlah terbanyak vektor-vektor bebas linier pada himpunan {x1, x2, x3, ... , xk}

RANK MATRIKS (2) Sifat-sifat Rank Misal X adalah matriks nxk dengan rank k dimana nk. Misal X rank penuh (full rank) maka r(X)=r(X’)=r(X’X)=k. Misal X adalah matriks kxk. Maka X nonsingular jika dan hanya jika r(X)=k. Misal X adalah matriks nxk, P adalah matriks nonsingular nxn dan Q adalah matriks nonsingular kxk. Maka r(X) = r(PX) = r(XQ). Rank dari matriks diagonal sama dengan bilangan tak nol kolom-kolom dari matriks Rank dari XY kurang dari atau sama dengan rank X dan kurang dari atau sama dengan rank Y

MATRIKS IDEMPOTEN Contoh Misal X matriks nxk memiliki rank penuh. Matriks nxn H=X(X ’X)-1X ‘ merupakan matriks idempoten. Saat X memiliki rank penuh, r(X)=k. Saat r(X)=r(X’X), maka r(X’X)=k. X’X merupakan matriks kxk. Sebarang matriks kxk dengan rank k adalah nonsingular. Sehingga, (X’X)-1 ada. Untuk menunjukkan H idempoten, H2 =[X(X ’X)-1X ‘] [X(X’X)-1X ‘] Gunakan sifat asosiatif untuk perkalian matriks, sehingga diperoleh H2 =X(X ’X)-1 (X‘X)(X ’X)-1X’ Saat (X ‘X)(X ’X)-1X=I maka H2 =X(X ’X)-1 X ‘=H (H merupakan matriks idempoten)

TRACE MATRIKS Definisi Trace matriks kxk dinotasikan dengan tr(X), didefinisikan sebagai jumlah elemen-elemen dari diagonal utama. Sifat-sifat Trace Misal c bilangan riil, maka tr(cX)=c tr(X) tr(XY) = tr(X)  tr(Y) Jika X berukuran nxp dan Y berukuran pxn, maka tr(XY)=tr(YX)

TRACE MATRIKS (2) Teorema Nilai eigen dari matriks idempoten selalu nol atau satu. Misal A matriks simetri kxk dan idempoten dengan rank r. Maka rank A sama dengan trace nya, r(A)=tr(A). Misal A1, A2, ... , Am adalah gabungan matriks simetri kxk. Syarat cukup dan syarat perlu untuk matriks ortogonal P sedemikian hingga P’AiP diagonal untuk i=1, 2, 3, ... , m adalah AiAj = AjAi untuk setiap pasangan (i,j).

Teorema Misal A1, A2, ... , Am adalah gabungan matriks simetri kxk. Maka: Setiap Ai dimana i=1, 2, 3, ... , m adalah idempoten adalah idempoten Ai Aj = 0 untuk ij Misal A1, A2, ... , Am adalah gabungan matriks simetri kxk. Misal r menyatakan rank dan misal ri menyatakan rank Ai dimana i=1, 2, 3, ... , m. Jika minimal dua pernyataan benar, maka

GENERALIZED INVERSE CONDITIONAL INVERSE Jika Anxn adalah matriks nonsingular, maka solusi SPL Ax = g ada dan unik. Solusi persamaannya adalah x = A-1g Jika A tidak bujursangkar, atau bujursangkar tapi singular maka solusinya bisa dicari menggunakan Generalized Inverse (matriks kebalikan umum) dan Conditional Inverse (matriks kebalikan bersyarat).

GENERALIZED INVERSE Definisi Misal A adalah matriks mxn. Jika matriks A- ada dan memenuhi 4 kondisi berikut, maka A- disebut generalized inverse dari A: AA- simetris A-A simetris AA-A = A A-AA- = A- generalized inverse dapat dinyatakan sebagai g-invers

GENERALIZED INVERSE (2) Teorema Misal A matriks mxn. Jika rank A adalah m maka A- = A’(AA’)-1 dan AA- = I. Jika rank A adalah n maka A- = (A’A)-1A’ dan A-A = I. Jika rank A adalah r, maka g-invers dari A dapat dihitung menggunakan langkah: Hitung B = A’A atau B = A A’ C1 = I Ci+1 = I(1/i)tr(CiB) – CiB, untuk i=1,2,..r-1 A- = rCrA’/tr(CrB) Catatan: Cr+1B = 0 dan tr(CrB) ≠ 0

CONDITIONAL INVERSE Definisi Misal A matriks mxn, Matriks Ac didefinisikan sebagai conditional inverse dari A jika dan hanya jika memenuhi A Ac A = A Sebuah matriks H berukuran nxn merupakan bentuk Hermit atas jika dan hanya jika memenuhi empat kondisi: H merupakan matriks segitiga atas Hanya 0 dan 1 pada diagonal Jika sebuah baris mempunyai elemen diagonal 0, maka setiap elemen pada baris tersebut adalah 0. Jika sebuah baris mempunyai elemen diagonal 1, maka elemen lain pada kolom diagonal adalah 0.