Faculty of Computer Science University of Indonesia Dr. Aniati Murni

Slides:



Advertisements
Presentasi serupa
MEMBUAT VIEW DAN THEME MOH.GUNTUR NANGI,SKM.M.Kes.
Advertisements

PENGENALAN Arc View Moh.Guntur Nangi, SKM.,M.Kes.
Sistem Informasi Geografis (TPE4118/2/P) TEP
Moh.Guntur Nangi,SKM.,M.Kes
GIS : Hardware & Software
Geographic Information and Spatial Information
KOMPONEN SIG TATAP MUKA IV.
FUNGSI SIG TATAP MUKA V.
MANAJEMEN DATA SIG.
Sistem Informasi Geografis
Pengolahan Citra (TIF05)
Faculty of Computer Science University of Indonesia Dr. Aniati Murni
Pengertian Citra Dijital
Praktikum PTI Sekolah Tinggi Ilmu Statistik Oleh : SIS - BPS Pengolahan Citra.
KONSEP DATA GEOSPASIAL
Eliminasi Gangguan Awan Pada Citra Optik
Oleh: Dr. Ir. Abdul Madjid Rohim, MS JURUSAN TANAH FAKULTAS PERTANIAN
GALIH WASIS WICAKSONO TEKNIK INFORMATIKA UMM
Pengantar Sistem Informasi Geografis
“Mendeteksi Kebakaran Hutan Di Indonesia dari Format Data Raster”
Perspective & Imaging Transformation
Citra Tematik Hasil Reklasifikasi Dari 30 Menjadi 6 Kelas obyek
Kompresi Citra dan Reduksi Data
 Tujuan Umum Setelah mengikuti materi ini mahasiswa diharapkan memahami Konteks Data Spasial  lihat buku konsep- konsep dasar hal.145 – 186  Tujuan.
Penjelasan ARCHMAP 13/04/2017.
Pertemuan 02 Komponen SIG (1) : Hardware, Software, Data Spasial
Pengolahan Citra Pertemuan 14.
SISTEM INFORMASI GEOGRAFI TKW 303
KONSEP DASAR SISTEM INFORMASI GEOGRAFIS
Metodologi Hybrid Berdasar Informasi Spasial dan Spektral Unsupervised dan Supervised Prof.Dr. Aniati Murni (R 1202) Dina Chahyati, M.Kom, (R 1226) Fakultas.
Junta Zeniarja, M.Kom, M.CS
PENGENALAN SISTEM INFORMASI GEOGRAFIS (SIG)
Sistem Informasi Geografis
PENGANTAR GRAFIK KOMPUTER DAN OLAH CITRA
Sistem informasi GEOGRAFIS
Sistem Informasi Geografis Model Data Spasial Cut Zyllan Zelila, ST. MKM.
ArcView Merupakan salah satu perangkat lunak dekstop SIG
Peta - Sistem Proyeksi - Digitasi Peta -
Sistem Informasi Geografis
Sistem Informasi Geografis
CARA MELAKUKAN GEOREFERENSI Oleh: Farida Hardaningrum, S.Si, MT
Model Data Spasial.
Data Spasial.
Operasi Aritmatika dan Geometri pada Citra
SIG Model Data Spasial.
GEOGRAPHIC INFORMATION SYSTEM
CITRA IKONOS Oleh: Mangapul P.Tambunan
Pemetaan Digital Geographic Information System (2 SKS) Semester II – TA 2008/2009 Politeknik Caltex Riau.
PENGOLAHAN CITRA DIGITAL : PENGENALAN POLA TEMPLATE MATCHING
Geographic Information and Spatial Information
SISTEM INFORMASI GEOGRAFI (SIG)
Komputer Grafis by Muhammad R Babo
DIGITAL ORTHOPHOTO.
Prinsip Perbaikan Citra Digital
Geographic Information System (GIS)
Oleh: Dr. Ir. Abdul Madjid Rohim, MS JURUSAN TANAH FAKULTAS PERTANIAN
Sistem Informasi Geografis
ANALISIS PERUBAHAN PENGGUNAAN LAHAN SELAMA 20 TAHUN DI WILAYAH PERBATASAN MAKASSAR – MAROS DENGAN Remote Sensing PROGRAM PASCASARJANA PENGELOLAAN LINGKUNGAN.
TRANSFORMASI DATA SPASIAL
Pengolahan Data Sistem Informasi Geografis
KONSEP UMUM SIG TRIA SARAS PERTIWI, SKM., MPH PRODI MIK, FIKES.
Oleh: Dr. Ir. Abdul Madjid Rohim, MS JURUSAN TANAH FAKULTAS PERTANIAN
SISTEM INFORMASI GEOGRAFIS
METERI S I G PENGENALAN ARCVIEW.
MATERI S I G Digitasi data spasial dan Pembangunan Topologi (mengunakan software autocad & AUTODESKMAP)
S I G Digitasi data spasial dan Pembangunan Topologi (mengunakan software autocad & AUTODESKMAP) Ir. Moh Sholichin, MT., Ph.D Website ;
PETA DAN PERPETAAN DR. EKO BUDIYANTO, M. Si..
MODUL.1 DATA SPASIAL DAN DATA NON SPASIAL
MATERI PERKULIAHAN DISUSUN OLEH: Michael Alexander Rampo, S
Pemrosesan Bukan Teks (Citra)
Transcript presentasi:

Faculty of Computer Science University of Indonesia Dr. Aniati Murni Metodologi Deteksi Perubahan Penutup Lahan dengan Teknologi RS, GPS, dan GIS (Sumber: Ira Hastuti, Magdalena R. Purwanti, dan Meilanie S.D, Putri, Student Project, Fakultas Ilmu Komputer, UI, 2002) Faculty of Computer Science University of Indonesia Dr. Aniati Murni

Data vektor dan raster yang tersedia Data citra remote sensing dari sensor Landsat Thematic Mapper (TM) daerah DKI Jakarta hasil rekaman tahun 1994 dan 1999 (data temporal) dan peta dijital DKI Jakarta tahun 1998. Analisis yang diinginkan adalah bentuk perubahan dalam aspek pemanfaatan lahan yang berkaitan dengan kwalitas lingkungan. Pengamatan akan dilakukan terhadap 6 (enam) jenis (obyek) penggunaan lahan, yaitu: jaringan jalan, area pemukiman, daerah vegetasi, badan air, area lahan terbuka, daerah industri.

Data Vektor Kekurangan Kelebihan Data direpresentasi pada resolusi yang se-sungguhnya Hasil cetak vektor lebih estetis dan meme-nuhi standar kartografi Sebagian besar data rujukan berbentuk vek-tor (seperti peta), jadi tidak perlu konversi data Lokasi geografis dapat dipertahankan ke-akuratannya Informasi topologi dapat disimpan dengan efisien, jadi operasi topologi (seperti anali-sis jaringan, jarak, dll.) juga dapat dilakukan dengan efisien Kekurangan Koordinat tiap titik / verteks / point harus di-simpan secara eksplisit Perlu pembentukan struktur topologi yang me-makan waktu, dimana setiap perubahan perlu pembangunan ulang struktur tersebut Algoritma vektor kompleks dengan waktu proses yang tinggi untuk data besar Data kontinue seperti tinggi permukaan bumi perlu dilakukan dengan cara interpolasi Analisis spatial, regsitrasi, dan filtering tidak dapat dilakukan dengan pendekatan ventor

Data Raster Kekurangan Kelebihan Letak geografis dinyatakan secara eksplisit berdasarkan posisi piksel / grid-cell Analisis data lebih mudah dan cepat karena sifat penyimpanan data dalam matriks Data raster bersifat inherent (tiap area memiliki atribut sendiri) sehingga memudahkan pemodelan matematik / analisis kwantitatif Data hutan dan ketinggian dapat diproses dengan mudah Data raster kompatibel dengan data masukan inderaja dan alat tampilan keluaran seperti monitor, printer dan plotter Kekurangan Resolusi ditentukan oleh ukuran sel, makin kecil makin akurat dan makin besar data Sulit untuk analisis jaringan dan representasi feature garis karena tergantung ukuran piksel Pemrosesan data atribut dikaitkan dengan data spasial akan merepotkan karena sifatnya yang inherent Karena sebagian besar data rujukan berbentuk vektor maka diperlukan konversi dari raster ke vektot Hasil cetak data raster tidak sebaik hasil cetak data vektor (jigsaw)

Metodologi Pemrosesan Data: dengan Teknologi RS, GPS, dan GIS Teknologi RS (Remote Sensing) terdiri dari perekaman data, penyaringan gangguan, dan klasifikasi citra untuk mendapatkan citra tematik (untuk data Landsat TM tahun 1994 dan 1999 dari Lapan RI). Citra tematik yang dihasilkan akan akurat bila disertai dengan survai ke lapangan dengan menggunakan teknologi GPS. Konversi data ke format yang kompatibel dengan GIS. Dengan fasilitas GIS dilakukan registrasi antara citra Landsat TM dengan citra dijital DKI Jakarta tahun 1998 yang diperoleh dari BPN. Dengan fasilitas GIS dilakukan analisis temporal dan pembuatan peta-peta yang diperlukan.

Metodologi Pemrosesan Data Remote Sensing: Pemrosesan Citra Dijital Landsat TM dengan ER-Mapper Version 5.5 Koreksi radiometrik (filtering pada preprocessing) Registrasi antara citra yang belum terkoreksi dengan citra yang sudah terkoreksi Klasifikasi citra menjadi citra tematik Filtering pada postprocessing untuk menghilangkan single-pixel region Konversi data raster menjadi data vektor Rektifikasi antara citra dengan peta

Pemrosesan Citra Dijital Landsat TM : Koreksi radiometrik (filtering) Koreksi radiometrik pada citra Landsat TM (sensor optik) untuk tujuan klasifikasi biasanya dilakukan dengan filter frekwensi rendah, yaitu mean filter (linear filter) dan median filter (non-linear filter) Median filter mempunyai akibat smoothing yang lebiih kecil dibanding mean filter dan digunakan untuk menghilangkan gangguan dalam bentuk random spike. Suatu window kernel (ditandai dengan garis kotak yang lebih tebal bisa berukuran 3x3 atau 5x5 dst,nya. Untuk mean filter, harga piksel ditengah diganti dengan harga rata-rata piksel dalam window tersebut. Untuk median filter, harga piksel ditengah diganti dengan harga media piksel dalam window tersebut. Citra

Pemrosesan Citra Dijital Landsat TM : Contoh Proses Registrasi Citra Citra Optik asli Citra radar asli Corrected Citra Optik Citra radar

Rektifikasi dan Registrasi Citra Rektifikasi dan Registrasi Citra merupakan proses koreksi geometrik yang menjadikan dua citra mempunyai resolusi spatial yang sama dalam arti bila dua citra tersebut meliputi daerah yang sama, maka kedua citra dapat dihimpitkan secara tepat. Proses pemetaan koordinat antara kedua citra dapat dilakukan melalui transformasi translasi, skala, rotasi atau bilinear transformation. Terminologi rektifikasi biasanya digunakan untuk registrasi antara citra dengan peta yang sudah diproyeksikan pada sistem proyeksi standar seperti UTM (Universe Transverse Mercator).

Pemrosesan Citra Dijital Landsat TM : Klasifikasi Citra menjadi Citra Tematik Klasifikasi citra dapat dilakukan dengan pendekatan supervised (terarah) dan unsupervised (tidak terarah) Klasifikasi tidak terarah lebih dikenal dengan proses clustering dimana kita hanya dapat memperkirakan jumlah kategori wilayah (cluster) yang ada pada citra. Algoritma yang paling sederhana adalah K-Mean Clustering. Klasifikasi terarah dilakukan berdasarkan sampel pem-belajaran (training sample set). Jumlah kategori obyek jelas dan pembuatan sampel setiap obyek dapat dilakukan. Dari sampel obyek dapat ditentukan estimator (mean dan variance) setiap obyek. Algoritma yang paling sederhana dan banyak digunakan adalah Minimum-Distance dan Gaussian Maximum Likelihood Classifiers.

K-Mean Clustering Initialisasi prototipe cluster (cluster mean) Pengelompokan setiap piksel ke cluster terdekat Perhitungan cluster mean yang baru Sudah stabil Ya Tidak Citra tematik Iterasi berikut Selesai

Klasifikasi dengan pendekatan terarah Dengan Maximum-Likelihood Classifier pola Xo secara benar akan dimasukkan ke kelas obyek 2, dengan Minimum-Distance (Euclidean) Classifier pola Xo akan masuk ke kelas obyek 1.

Klasifikasi Citra dengan ER Mapper Versi 5 Klasifikasi Citra dengan ER Mapper Versi 5.5: Landsat TM tahun 1994 (courtesy Lapan RI) Citra asli Citra tematik dengan 30 cluster obyek

Citra Tematik Hasil Reklasifikasi Dari 30 Menjadi 6 Kelas obyek Tahun 1994 Tahun 1999

Citra Tematik DKI Jakarta dengan 6 Kelas Citra Tematik DKI Jakarta Obyek versus simbol warna

6 (Enam) Kelas Yang Digunakan 1. Lahan Terbuka 2. Daerah Perindustrian / Perdagangan 3. Jaringan Jalan 4. Badan Air 5. Daerah Pemukiman 6. Daerah Vegetasi

Cek ke Lapangan dengan GPS Diperlukan cek lapangan untuk mengambil sampel-sampel yang akan digunakan sebagai groundtruth. Sampel yang diambil mengandung informasi koordinat dan kategori obyek di lokasi sampel. Koordinat titik ditentukan dengan bantuan peralatan GPS. Data groundtruth tersebut kemudian digunakan untuk memperbaiki hasil klasifikasi dalam proses untuk mendapatkan citra tematik.

Editing noise / gangguan pada citra tematik dengan ER-Mapper 5.5 Intensitas obyek awan pada citra sensor optik seperti awan menyerupai lahan terbuka / jalan raya dan obyek bayangan awan seperti air. Seperti contoh dibawah ini (yang diberi tanda lingkaran). Daerah awan (merah) dan bayangannya (biru) kemudian di-edit menjadi daerah pemukiman (pink) dan yang di atas laut menjadi badan air (biru).

Filtering pada tahap postprocessing Klasifikasi citra dari gray-level image ke citra tematik dilakukan dengan memberikan label tema (nilai numerik / simbol / warna) pada setiap piksel gray-level image sesuai dengan kategori / kelas obyeknya. Pada hasil tematik map sering terjadi kesalahan yang membentuk single-pixel region. Untuk menghilangkan single-pixel region tersebut dapat dilakukan proses majority filtering. Piksel yang ditengah jendela yang berukuran 3x3 atau 5x5 dst.nya diberi nilai majority dari nilai piksel-piksel yang ada di dalam jendela tersebut.

Konversi Data Format data citra / raster yang didukung oleh ArcView Version 3.1 antara lain adalah format TIFF, ERDAS, BSQ dan BIL. Shapefile adalah format untuk data feature lengkap dengan atributnya dimana penghapusan feature dan perubahan nilai atribut dapat dilakukan. Format data yang digunakan sebagai masukan ArcView Version 3.1 adalah CAD file dengan ekstension .dxf, shapefile, coverage, .dbf Ada beberapa format khusus yang diperlukan untuk menjalankan proses change detection pada ArcView 3.1, yaitu ekstension .avx yang dapat ditambahkan dengan menjalankan suatu script yang telah disediakan oleh ESRI sebagai vendor ArcView, demikian juga untuk merubah ekstension .erv (keluaran ER-Mapper) menjadi .dxf

Konversi Data (lanjutan) Konversi data dilakukan dari bentuk raster citra tematik tahun 1994 dan 1999 ke bentuk vektor seperti peta dijital tahun 1998 yang sudah dibangun dan dapat dianalisis dengan software ArcView Vektorisasi citra raster tematik dalam format .ers dilakukan dengan software ER-Mapper ke data vektor per layer obyek (ada 6 obyek) dalam format .erv yang kemudian dengan script Yang disediakan ESRI diubah ke format .dxf (vektor polyline) yang dapat dibaca oleh ArcView. Oleh software ArcView, format .dxf diubah menjadi format shapefile .shp (vektor polyline) yang sama dengan peta dijital tahun 1998, data yang telah dapat dianalisis / dimanipulasi dengan ArcView. Dengan demikian data tahun 1994, 1998, dan 1999 sudah dalam format yang sama dan dapat dianalisis bersama dengan software ArcView. Untuk obyek geografis wilayah perlu dilakukan proses dari polyline ke poligon yang fasilitasnya disediakan oleh ArcView. Proses ini dilakukan untuk setiap layer.

Layers data vektor 6 obyek