Algoritma Data Mining romi@romisatriawahono.net Object-Oriented Programming Algoritma Data Mining http://romisatriawahono.net
romi@romisatriawahono.net Object-Oriented Programming Algoritma Estimasi Algoritma estimasi mirip dengan algoritma klasifikasi, tapi variabel target adalah berupa bilangan numerik (kontinyu) dan bukan kategorikal (nominal atau diskrit) Estimasi nilai dari variable target ditentukan berdasarkan nilai dari variabel prediktor (atribut) Algoritma estimasi yang biasa digunakan adalah: Linear Regression, Neural Network, Support Vector Machine http://romisatriawahono.net
Contoh: Estimasi Performansi CPU romi@romisatriawahono.net Object-Oriented Programming Contoh: Estimasi Performansi CPU Example: 209 different computer configurations Linear regression function PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX 32 128 CHMAX 8 16 CHMIN Channels Performance Cache (Kb) Main memory (Kb) Cycle time (ns) 45 4000 1000 480 209 67 8000 512 208 … 269 32000 29 2 198 256 6000 125 1 PRP CACH MMAX MMIN MYCT http://romisatriawahono.net
romi@romisatriawahono.net Object-Oriented Programming Algoritma Prediksi Algoritma prediksi/forecasting sama dengan algoritma estimasi di mana label/target/class bertipe numerik, bedanya adalah data yang digunakan merupakan data rentet waktu (data time series) Istilah prediksi kadang digunakan juga untuk klasifikasi, tidak hanya untuk prediksi time series, karena sifatnya yang bisa menghasilkan class berdasarkan berbagai atribut yang kita sediakan Semua algoritma estimasi dapat digunakan untuk prediksi/forecasting http://romisatriawahono.net
Contoh: Prediksi Harga Saham Dataset harga saham dalam bentuk time series (rentet waktu) harian
Contoh: Prediksi Harga Saham (Plot) romi@romisatriawahono.net Object-Oriented Programming Contoh: Prediksi Harga Saham (Plot) http://romisatriawahono.net
Contoh: Prediksi Harga Saham (Plot)
Algoritma Klasifikasi romi@romisatriawahono.net Object-Oriented Programming Algoritma Klasifikasi Klasifikasi adalah algoritma yang menggunakan data dengan target/class/label berupa nilai kategorikal (nominal) Contoh, apabila target/class/label adalah pendapatan, maka bisa digunakan nilai nominal (kategorikal) sbb: pendapatan besar, menengah, kecil Contoh lain adalah rekomendasi contact lens, apakah menggunakan yang jenis soft, hard atau none Algoritma klasifikasi yang biasa digunakan adalah: Naive Bayes, K-Nearest Neighbor, C4.5, ID3, CART, Linear Discriminant Analysis, etc http://romisatriawahono.net
Contoh: Rekomendasi Main Golf romi@romisatriawahono.net Object-Oriented Programming Contoh: Rekomendasi Main Golf Input: Output (Rules): If outlook = sunny and humidity = high then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity = normal then play = yes If none of the above then play = yes http://romisatriawahono.net
Contoh: Rekomendasi Main Golf romi@romisatriawahono.net Object-Oriented Programming Contoh: Rekomendasi Main Golf Input (Atribut Nominal dan Numerik): Output (Rules): If outlook = sunny and humidity = high then play = no If outlook = sunny and humidity > 83 then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity < 85 then play = yes If none of the above then play = yes http://romisatriawahono.net
Contoh: Rekomendasi Main Golf Output (Tree):
Contoh: Rekomendasi Contact Lens romi@romisatriawahono.net Object-Oriented Programming Contoh: Rekomendasi Contact Lens Input: http://romisatriawahono.net
Contoh: Rekomendasi Contact Lens romi@romisatriawahono.net Object-Oriented Programming Contoh: Rekomendasi Contact Lens Output/Model (Tree): http://romisatriawahono.net
Contoh: Penentuan Jenis Bunga Iris romi@romisatriawahono.net Object-Oriented Programming Contoh: Penentuan Jenis Bunga Iris Input: http://romisatriawahono.net
Contoh: Penentuan Jenis Bunga Iris romi@romisatriawahono.net Object-Oriented Programming Contoh: Penentuan Jenis Bunga Iris Output (Rules): http://romisatriawahono.net
Contoh: Penentuan Jenis Bunga Iris romi@romisatriawahono.net Object-Oriented Programming Contoh: Penentuan Jenis Bunga Iris Output (Tree): http://romisatriawahono.net
romi@romisatriawahono.net Object-Oriented Programming Algoritma Klastering Klastering adalah pengelompokkan data, hasil observasi dan kasus ke dalam class yang mirip Suatu klaster (cluster) adalah koleksi data yang mirip antara satu dengan yang lain, dan memiliki perbedaan bila dibandingkan dengan data dari klaster lain Perbedaan utama algoritma klastering dengan klasifikasi adalah klastering tidak memiliki target/class/label, jadi termasuk unsupervised learning Klastering sering digunakan sebagai tahap awal dalam proses data mining, dengan hasil klaster yang terbentuk akan menjadi input dari algoritma berikutnya yang digunakan http://romisatriawahono.net
Contoh: Klastering Jenis Gaya Hidup romi@romisatriawahono.net Object-Oriented Programming Contoh: Klastering Jenis Gaya Hidup Claritas, Inc. provide a demographic profile of each of the geographic areas in the country, as defined by zip code. One of the clustering mechanisms they use is the PRIZM segmentation system, which describes every U.S. zip code area in terms of distinct lifestyle types (66 segments). Just go to the company’s Web site, enter a particular zip code, and you are shown the most common PRIZM clusters for that zip code. What do these clusters mean? For illustration, let’s look up the clusters for zip code 90210, Beverly Hills, California. The resulting clusters for zip code 90210 are: Cluster 01: Blue Blood Estates Cluster 10: Bohemian Mix Cluster 02: Winner’s Circle Cluster 07: Money and Brains Cluster 08: Young Literati http://romisatriawahono.net
romi@romisatriawahono.net Object-Oriented Programming http://romisatriawahono.net
Contoh: Klastering Bunga Iris
Contoh: Klastering Bunga Iris (Plot)
Contoh: Klastering Bunga Iris (Table)
romi@romisatriawahono.net Object-Oriented Programming Algoritma Asosiasi Algoritma association rule (aturan asosiasi) adalah algoritma yang menemukan atribut yang “muncul bersamaan” Dalam dunia bisnis, sering disebut dengan affinity analysis atau market basket analysis Algoritma asosiasi akan mencari aturan yang menghitung hubungan diantara dua atau lebih atribut Algoritma association rules berangkat dari pola “If antecedent, then consequent,” bersamaan dengan pengukuran support (coverage) dan confidence (accuration) yang terasosiasi dalam aturan http://romisatriawahono.net
romi@romisatriawahono.net Object-Oriented Programming Algoritma Asosiasi Contoh, pada hari kamis malam, 1000 pelanggan telah melakukan belanja di supermaket ABC, dimana: 200 orang membeli Sabun Mandi dari 200 orang yang membeli sabun mandi, 50 orangnya membeli Fanta Jadi, association rule menjadi, “Jika membeli sabun mandi, maka membeli Fanta”, dengan nilai support = 200/1000 = 20% dan nilai confidence = 50/200 = 25% Algoritma association rule diantaranya adalah: A priori algorithm, FP-Growth algorithm, GRI algorithm http://romisatriawahono.net
Contoh Penerapan Data Mining romi@romisatriawahono.net Object-Oriented Programming Contoh Penerapan Data Mining Penentuan kelayakan aplikasi peminjaman uang di bank Penentuan pasokan listrik PLN untuk wilayah Jakarta Diagnosis pola kesalahan mesin Perkiraan harga saham dan tingkat inflasi Analisis pola belanja pelanggan Memisahkan minyak mentah dan gas alam Pemilihan program TV otomatis Penentuan pola pelanggan yang loyal pada perusahaan operator telepon Deteksi pencucian uang dari transaksi perbankan Deteksi serangan (intrusion) pada suatu jaringan http://romisatriawahono.net
Cognitive-Performance Test Sebutkan 5 peran utama data mining! algoritma apa saja yang dapat digunakan untuk 5 peran utama data mining di atas? Jelaskan perbedaan estimasi dan prediksi! Jelaskan perbedaan estimasi dan klasifikasi! Jelaskan perbedaan klasifikasi dan klastering! Jelaskan perbedaan klastering dan prediksi! Jelaskan perbedaan supervised dan unsupervised learning! Sebutkan tahapan utama proses data mining!