Simulasi Antrian Ipung Permadi, S.Si, M.Cs.

Slides:



Advertisements
Presentasi serupa
TURUNAN/ DIFERENSIAL.
Advertisements

MODEL ANTRIAN Matakuliah Operations Research.
Sistem Tunggu (Delay System)
Salah satu tujuan perhitungan trafik
Operations Management
P E N J A D W A L A N Pertemuan 10.
Contoh Aplikasi : Kasus 1.
TEORI ANTRIAN.
MODEL ANTRIAN RISET OPERASI.
TEORI ANTRIAN.
4. PROSES POISSON Prostok-4-firda.
TURUNAN DIFERENSIAL Pertemuan ke
Delay System II. Tutun Juhana – ET3042 ITB 2 Sistem Antrian M/M/m Kedatangan panggilan : Poisson arrival Service time : exponentially distributed Jumlah.
Sistem Delay (Sistem Antrian/Delay System)
Proses Stokastik Semester Ganjil 2013.
Luas Daerah ( Integral ).
Slide 7 – Penjadwalan Process
Manajemen Proses Meliputi : Pengelolaan sisklusi hidup proses
Simulasi Antrian.
TEORI ANTRIAN Suatu antrian ialah garis tunggu dari nasabah yang
Model Antrian Ir Tito Adi Dewanto.
Teori Antrian/Queuing Theory Models
Modul 10 : Optimasi Kompetensi Pokok Bahasan :
TEORI ANTRIAN DAN SIMULASI
Pertemuan 11 Teori Pengambilan Keputusan
Kompleksitas Algoritma
TEORI ANTRIAN.
JARINGAN & REKAYASA TRAFIK ( EL 3146 ) B A B IV
7. RANTAI MARKOV WAKTU KONTINU (Kelahiran&Kematian Murni)
BAB 9 SIMULASI ANTRIAN.
Akhid Yulianto, SE, MSc (Log)
Definisi dan Relasi Pokok
TEORI PGB. KEPUTUSAN TEORI ANTRIAN Ari Darmawan, Dr. SAB. MAB.
Teori Antrian.
Operations Management
Dipresentasikan oleh: Herman R. Suwarman, MT
MODEL SISTEM ANTRIAN.
Tutorial 6 SISTEM ANTRIAN.
Assalamu’alaikum Warohmatullohi Wabarokatuh
Model Antrian.
Single Channel Single Server
MODEL ANTRIAN DAN APLIKASINYA
teori ANTRIAN & aplikasinya
Sistem Antrian Pemodelan Sistem.
TEORI ANTRIAN Tita Talitha, M.T.
Operations Management
Operations Management
Single Channel Single Server
Pertemuan 6 Model Antrian
Operations Management
SISTEM ANTREAN Pertemuan 11
Teori antrian Manajemen Operasional
ANTRIAN Pertemuan Ke-13.
SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS)
ANALISA ANTRIAN.
ET 3042 Rekayasa Trafik Telekomunikasi Model Teletraffic
MODEL ANTRIAN 14.
DISUSUN OLEH : IPHOV KUMALA SRIWANA
SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS)
Manajemen sains “Analisis Antrian” oleh: KELOMPOK 13 - STMIK RAHARJA
Teknik Pengambilan Keputusan
Waiting Line & Queuing Theory Model
Operations Management
MODEL ANTRIAN RISET OPERASI.
Teori Antrian.
Pengertian Teori Antrian
ANTRIAN.
Riset Operasi Semester Genap 2011/2012
Riset Operasi Semester Genap 2011/2012
SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS)
Transcript presentasi:

Simulasi Antrian Ipung Permadi, S.Si, M.Cs

Waktu Rerata dalam Sitem (W ) Jumlah Rerata dalam Sistem (L ) Analisis Antrian Waktu Tunggu Rerata dalam Antrian (Wq ) Pelayanan Rerata kedatangan ( Jumlah Rerata dalam Antrian (Lq ) Laju ( Waktu Rerata dalam Sitem (W ) Jumlah Rerata dalam Sistem (L ) Pemrograman Simulasi

Grafik hubungan antara biaya, jumlah server dan kinerja Biaya Pelayanan Optimal Jumlah Server Biaya & jumlah server Kinerja Cost / biaya Pemrograman Simulasi

Biaya Sistem Antrian = 0.0 * Biaya Perkiraan Total  = 1.0 Biaya Pelayanan Optimal Biaya Fasilitas Pelayanan Biaya Waktu Tunggu Biaya Pengadaan Layanan = 0.0 *  = 1.0 Pemrograman Simulasi

Karakteristik Kedatangan Ukuran Populasi Kedatangan Tak terbatas (essentially infinite) Terbatas (finite) Pola kedatangan pada sistem Terjadwal Secara acak  distribusi Poisson Pemrograman Simulasi

Konfigurasi Sistem Antrian Single Channel, Single Phase System Single Channel, Multiphase System Pemrograman Simulasi

Konfigurasi Sistem Antrian Multichannel, Single Phase System Multichannel, Multiphase System Pemrograman Simulasi

Disiplin Antrian Bagaimana pelanggan diseleksi dari antrian untuk dilayani? First Come First Served (FCFS) Shortest Processing Time (SPT) Priority (jobs are in different priority classes) Untuk kebanyakan model diasumsikan FCFS Pemrograman Simulasi

X / Y / k (notasi Kendall) X = distribusi kedatangan (iid) Penamaan Antrian X / Y / k (notasi Kendall) X = distribusi kedatangan (iid) Y = distribusi waktu pelayanan (iid) M = distribusi eksponensial untuk waktu layanan dan kedatangan Ek = distribusi Erlang k G = general (antrian secara umum) D = deterministic (layanan dan kedatangan konstan) k = jumlah server Pemrograman Simulasi

Model Antrian M/M/1 M/M/s Model Waktu Pelayanan Konstan G/G/k Model Populasi Terbatas Pemrograman Simulasi

Antrian M/M/1 Pemrograman Simulasi

Laju kedatangan  (distribusi Poisson) Asumsi M/M/1 Laju kedatangan  (distribusi Poisson) Laju pelayanan  (distribusi exponential) Server tunggal First-come-first-served (FCFS) Panjang antrian tak terbatas Jumlah pelanggan tak terbatas Pemrograman Simulasi

Karakteristik Operasi M/M/1 Faktor Utilitas Rerata Waktu Tunggu Rerata Jumlah Pelanggan Pemrograman Simulasi

Karakteristik Operasi M/M/1 Persentasi Waktu Luang Jumlah Pelanggan dalam Sistem Biaya Pengeluaran Total Total Cost = Waiting Cost + Service Cost Total Cost = Waiting Cost + Service Cost Pemrograman Simulasi

contoh Sebuah bank memiliki 1 mesin ATM. Kenyataanya : Waktu rata-rata untuk melayani customer 50 detik Rata-rata customer yang akan memakai atm 60 org/jam Dirancang pembuatan mesin ATM yang baru. Pihak bank ingin mengetahui probabilitas seorang customer pasti harus mengantri untuk memakai ATM Penyelesaian :  =Tingkat kedatangan = 60 org/jam  = tingkat layanan = 72 org/jam Sehingga tingkat kesibukan = 60/72 = 0,833 Rata waktu tunggu dalam antrian = 0,0694 jam = 4,167menit Artinya P(seorang customer harus mengantri) = 0,833 Lama menunggu rata-rata = 4,167 menit Rata jumlah customer dalam antrian = 4,2 = 4 org Pemrograman Simulasi

Antrian M/M/s Pemrograman Simulasi

Laju kedatangan of  (distribusi Poisson) Asumsi M/M/s Laju kedatangan of  (distribusi Poisson) Service rate of  (distribusi exponential) Dua/lebih server First-come-first-served (FCFS) Panjang antrian tak terbatas Jumlah pelanggan tak terbatas Laju pelayanan sama pada semua server Pemrograman Simulasi

Karakteristik Operasi M/M/s Faktor Utilitas Rerata Waktu Tunggu Rerata Jumlah Pelanggan Pemrograman Simulasi

Karakteristik Operasi M/M/s Persentasi Waktu Luang for Pemrograman Simulasi

contoh Sebuah supermaket memiliki 4 jalur keluar/pembayaran. Kedatangan customer dengan tingkatan 100 org/jam. Rata-rata 1 customer dilayani 2 menit. Ingin diketahui : Berapa jumlah customer berada dalam antrian ! Probabilitas customer tidak harus antri ! Penyelesaian : M = 4 = 100 org/jam = 30 org/jam  1 jam = ?? Org 1 org = 2 menit 1 jam = 60/2 = 30 org Sehingga = 0,8331 Dari dan diperoleh Lq = 3,29 org Pemrograman Simulasi

Model Waktu Pelayanan Konstan Pemrograman Simulasi

Asumsi Pelayanan Konstan Laju kedatangan  (distribusi Poisson) Waktu pelayanan konstan Server tunggal First-come-first-served (FCFS) Panjang antrian tak terbatas Jumlah pelanggan tak terbatas Pemrograman Simulasi

Karakteristik Operasi Faktor Utilitas Rerata Waktu Tunggu Rerata Jumlah Pelanggan Pemrograman Simulasi

Karakteristik Operasi Persentasi Sistem Kosong Jumlah Pelanggan dalam Sistem Biaya Total Total Cost = Waiting Cost + Service Cost Total Cost = Waiting Cost + Service Cost Pemrograman Simulasi