MATRIKS PENYAJIAN GRAPH

Slides:



Advertisements
Presentasi serupa
Teori Graf – Matematika Diskrit
Advertisements

Graph Traversals (Penelusuran Graph)
GRAPH.
Menempatkan Pointer Q 6.3 & 7.3 NESTED LOOP.
Matematika Diskrit Dr.-Ing. Erwin Sitompul
3. MATRIKS, RELASI, DAN FUNGSI
Struktur Diskrit Suryadi MT Teori Graph Kuliah_11 Teori Graph.
Matematika Diskrit Suryadi MT Tree.
Jembatan Königsberg.
e7 4. INCEDENCE MATRIX Menggambarkan hubungan antara simpul dan busur.
MODUL KULIAH STRUKTUR DATA TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN :::::: September Pertemuan Ke : 13 / Page BAB IX GRAPH Dinyatakan.
PERTEMUAN 14 POHON (TREE).
TEORI GRAF.
Tugas #3 File soal UTS sudah dikirim ke alamat masing-masing.
BAB 5 TREE (Pohon) 179.
GRAPH Kata Graph di dalam Matematika mempunyai bermacam- macam arti. Biasanya di kenal kata Graph atau Grafik Fungsi, ataupun relasi. Untuk itu kali ini.
Graf Berarah PART 5 DOSEN : AHMAD APANDI, ST.
Pertemuan 13 GRAPH IMAM SIBRO MALISI NIM :
TEORI GRAF Oleh : Yohana N, S.Kom.
Pengenalan Graph Disusun Oleh: Budi Arifitama Pertemuan 9.
Algoritma Kruskal Teori Graph.
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-3 1.
Graf Isomorfik (Isomorphic graph)
TEORI GRAF.
Bahan Kuliah IF2091 Struktur Diskrit
TEORI GRAPH STT WASTUKANCANA Ismi Kaniawulan
Algoritma Branch and Bound
TEORI GRAPH.
STRUKTUR DATA GRAPH dan DIGRAPH
G R A P H Graph adalah Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak.
GRAPH.
13. Graf berbobot (Weighted graph)
GRAPH STRUKTUR DATA Disusun Oleh :
Dasar-Dasar Teori Graf
13. Graf berbobot (Weighted graph)
STRUKTUR DATA Struktur Data Graf.
Pewarnaan Graf.
Bahan Kuliah IF2120 Matematika Diskrit
PART 4 TREE (POHON) Dosen : Ahmad Apandi, ST
Pohon (bagian ke 6) Matematika Diskrit.
*copyleft*1 Ade Ariyani A Agung Taufiqurrahman Annas Firdausi Hario Adit W Kartika Anindya P Kelompok XII Implementation of Dijkstra’s Shortest Path Algorithm.
Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut Representasi : Objek : noktah, bulatan.
Pencarian (Searching)
Rahmady Liyantanto liyantanto.wordpress.com
BAB VIII G R A F.
Teori Graf Jhon Enstein Wairata.
Algoritma dan Struktur Data
Pokok Bahasan 4 Topologi Paralel Prosesor
GRAPH.
MATRIKS & RELASI.
Graf Berarah / DIGRAPH PART 5 DOSEN : AHMAD APANDI, ST.
TEORI GRAPH (LANJUTAN)
TEORI GRAPH by Andi Dharmawan.
MATRIKS PENYAJIAN GRAPH
Graf Berlabel Graf Euler Graf Hamilton
Pertemuan 22 Graph Operation
BAB 7: Graf.
FITRI UTAMININGRUM, ST, MT
Matakuliah : T0534/Struktur Data Tahun : 2005 Versi : September 2005
Pertemuan 8 Review Berbagai Struktur Data Lanjutan …..
Soal Latihan Struktur Data.
STRUKTUR DATA Struktur Data Graf.
STRUKTUR DATA (9) Struktur Data Graf.
Trees Directed Graph Algoritma Dijkstra
Matematika diskrit BAB IV.
Pertemuan 17 Lintasan Terpendek
GRAPH Graph didefinisikan sebagai pasangan himpunan titik-titik simpul (V) dan himpunan garis atau busur (E) dinyatakan dalam bentuk G=(V,E) dimana V tidak.
Matematika Diskrit TIF (4 sks) 3/9/ /5/2010.
Keterkaitan Kegiatan Produksi – 2
Graf dan Analisa Algoritma
Transcript presentasi:

MATRIKS PENYAJIAN GRAPH Pertemuan 14 MATRIKS PENYAJIAN GRAPH IMAM SIBRO MALISI NIM : 0931464013

MATRIKS PENYAJIAN GRAPH Misalnya disajikan Graph G dalam Matriks ruas B ukuran (M x 2), maka setiap baris Matriks menyatakan ruas, misalnya baris (4 7) menyatakan ada ruas menghubungkan simpul 4 dan 7. Matriks Adjacency dari Graph G, yaitu Matriks yang menghubungkan Vertex dengan Vertex, tanpa ruas sejajar adalah Matriks A berukuran (N x N) yang bersifat : 1 , bila ada ruas (Vi, Vj) aij= 0, bila dalam hal lain.

Matriks Adjacency merupakan matriks simetri Matriks Adjacency merupakan matriks simetri. Untuk Graph dengan ruas sejajar, Matriks Adjacency didefinisikan sebagai berikut : P, bila ada p buah ruas menghubungkan aij = (Vi, Vj)(p>0) 0, bila dalam hal lain. Matriks Incidence dari Graph G, yaitu Matriks yang menghubungkan Vertex dengan Edge, tanpa self-loop didefinisikan sebagai Matriks M berukuran (NXM) sebagai berikut : 1, bila ada ruas ej berujung di simpul Vi mij = 0, dalam hal lain.

Contoh : Matriks Ruas atau : Atau secara pasangan {(1,2(1,3)(1.4)(2,3)(3,4)(3,5)(4,5)

contoh Matriks Adjaceny v1 v2 v3 v4 v5 V1 0 1 1 1 1 V2 1 0 1 0 0

E contoh : Matriks Adjaceny   e1 e2 e3 e4 e5 e6 e7 e8 V1 1 V2 V3 V4 V5

GRAPH TERARAH (DIRECTED GRAPH / DIGRAPH) Graph terarah adalah Graph yang dapat menghubungkan V1 ke V2 saja (1 arah). Maksimum jumlah busur dari n simpul adalah : n ( n - 1) Suatu Graph Berarah (Directed Graph) D terdiri atas 2 himpunan : 1) Himpunan V, anggotanya disebut simpul. 2) Himpunan A, merupakan himpunan pasangan terurut, yang disebut ruas berarah atau arkus.

Contoh, Gambar dibawah ini adalah sebuah Graph Berarah D(V,A) dengan : 1. V mengandung 4 simpul, yaitu 1, 2, 3 dan 4 2. A mengandung 7 arkus, yaitu (1,4) ,(2,1), (2,1), (4,2), (2,3), (4,3) dan (2) Arkus (2,2) disebut gelung (self-loop), sedangkan arkus (2,1) muncul lebih dari satu kali, disebut arkus sejajar atau arkus berganda.

Bila arkus suatu Graph Berarah menyatakan suatu bobot, maka Graph Berarah tersebut dinamakan jaringan / Network. Biasanya digunakan untuk menggambarkan situasi dinamis. Bila V’ himpunan bagian dari V serta A’ himpunan bagian dari A, dengan titik ujung anggota A’ terletak di dalam V’, maka dikatakan bahwa D’(V’,A’) adalah Graph bagian (Subgraph) dari D(V,A). Bila A’ mengandung semua arkus anggota A yang titik ujungnya anggota V’, maka dikatakan bahwa D’(V’,A’) adalah Graph Bagian yang dibentuk atau direntang oleh V’.

GRAPH TAK TERARAH (UNDIRECTED GRAPH) Graph Tak Terarah adalah Graph yang menghubungkan 2verteks V1 ke V2 dan V2 ke V1 (2 arah). Bila Verteks =n, maka Graph Tak terarah komplit akan mempunyai busur edge sama dengan : n ( n - 1 ) / 2 Busur/edge/arc simpul/verteks/node Yang dapat dilakukan adalah : V1-V2=V2-V1 V1-V4=V4-V1 dan setarusnya.

CRITICAL PATH Menggunakam Graph berbobot dan mempunyai Arah Simpul asal : 1 Simpul Tujuan : 5

PATH BOBOT Alternatif : 1-->4-->5 16 1-->2-->5 15 1-->2-->3-->5 24 1-->4-->3-->5 19 1-->2-->3-->4-->5 29 1-->4-->3-->2-->5 22 Diperloleh : Critical ( Lintasan Kritis )=29 Shortest Path (Lintasan Terpendek ) =15

MINIMUM SPANNING TREE Merupakan Spanning Tree yang mempunyai Bobot dan tidak mempunyai arah dengan hasil penjumlahan bobotnya adalah minimum. Lihat gambar Graph G berikut :

Langkah yang dilakukan untuk membentuk minimum spanning tree adalah : Bentuk kembali semua simpul tetapi tanpa ruas. Gambar dan telusuri ruas dengan bobot paling kecil, seterusnya (secara ascending) hingga semua simpul terhubung T ot al M in im um S pann ing T r ee = 22

PENELUSURAN GRAPH Dapat dilakukan dengan 2 cara , yaitu 1 Deph First Search (DFS) 2 Breadth first Search (BFS) Depth First Search (DFS) penurusuran dengan DFS pada Graph Tak Berarah denga melakukan pengecekan pada Node dengan kedalaman pertama dari node yang ditinjau.

V1 V2 V3 Karena V 8 sudah dilewati setelah penelusuran ke V4 , makapenelusuran yang berikutnya dianggap tidak di lewati lagi V5 V6 V4 V7 V8

VERTEKS V1 --- > --- > V2 --- > --- > --- > V3 --- > --- > V4 --- > --- > V5 --- > --- > V6 --- > --- > V7 --- > --- > V8 --- > --- > --- > Dari gambar di atas akan diperoleh urutan : V1 --- > V2 --- > V4 --- > V8 --- > V5 , V6 --- > V3 --- > V7 2 1 3 4 3 4 6 8 5 5 7 7

2. Breadth First Search (BFS). Berbeda dengan cara BFS, dengan BFS penelusuran akan diawasi dari Node-1, kemudian melebar pada Adjacent Node dari Node-1 dan diteruskan pada Node-2, Node- 3 dan seterusnya.

V1 V2 V3 Dari gambar di atas akan diperoleh urutan : V1 , V2  V3 ,V4 --- > V5 V6 --- > V7, --- > V8 V5 V6 V4 V7 V8

Latihan Soal Struktur Data (Pertemuan 14) 1. Matriks penyajian graph yang menghubungkan vertex dengan vertex, tanpa ruas sejajar, disebut matriks… a. Incidence c. Adjacency b. Ruas d. Simpul 2. Yang tidak termasuk dalam matriks penyajian graph adalah matriks… a. Adjacency c. Ruas b. Incidence d. Transpose 3. Bila diketahui simpul dari suatu graph berarah (Directed Graph) adalah 5, maka maksimum jumlah busur dari graph tersebut adalah…. a. 25 b. 20 c. 10 d. 15

4. Penelusuran graph yang diawali dari node-1 kemudian melebar pada node-2, node-3 dan seterusnya, adalah penelusuran dengan cara …. a. Breadth First Search c. Node First Search b. Depth First Search d. Edge First Search 5. Critical Path dari simpul A ke simpul D pada graph disamping adalah … a. 5 c. 20 b. 18 d. 53 A

SEKIAN Anak ayam turun delapan Mati satu tinggal lah tujuh Hidup harus penuh harapan Jadikan itu jalan yang dituju