Diferensial Fungsi Majemuk

Slides:



Advertisements
Presentasi serupa
Diferensial fungsi sederhana
Advertisements

PERMINTAAN DALAM PASAR PRODUK/OUTPUT
INTEGRAL
DIFERENSIAL FUNGSI SEDERHANA (ORDINARY DIFFERENTIAL)
DIFERENSIAL (fungsi sederhana)
MATRIKS (lanjutan……)
Diferensial & Optimalisasi
Elastisitas Tenaga kerja dan Elastisitas Kapital
LABOR MARKET Kuliah 12. THE LABOR MARKET..1  When firms respond to an increase in demand by stepping up production : Higher production requires an increase.
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Relation
Economic models Consept of sets. Ingredients of mathematical models An economic model is merely a theoretical framework, and there is no inherent reason.
Regresi linier sederhana
Game Theory Purdianta, ST., MT..
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
TEKNIK PENGINTEGRALAN
Teorema Green.
Diferensial Fungsi Majemuk
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
Edge Detection (Pendeteksian Tepi)
WaterfallPrototyping RAD Incremental Prototyping Pendekatan SDLC.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Research Design (Cont). Jenis Perancangan Riset Jenis perancangan mana yg akan digunakan ? Peneliti perlu memikirkan tentang apa yang mereka inginkan.
Mekanisme Pasar Permintaan dan Penawaran
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI
Pertemuan 05 Sebaran Peubah Acak Diskrit
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.

 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
ANALISIS EKSPLORASI DATA
1 Pertemuan 25 Matakuliah: I0044 / Analisis Eksplorasi Data Tahun: 2007 Versi: V1 / R1 Analisis Regresi Ganda (I) : Pendugaan Model Regresi.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Dr. Nur Aini Masruroh Deterministic mathematical modeling.
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
Pasar Faktor Produksi.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
NON-LINIER OPTIMIZATION
Cursor MI2163 Dasar Pemrograman Basis Data. Introduction Cursor merupakan suatu variabel yang digunakan untuk menampung hasil query yang terdiri atas.
Comparative Statics Slutsky Equation
Suharmadi Sanjaya - Matematika ITS. BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics.
I. Production with One Variable Input
PERSAMAAN DIFERENSIAL (PD)
Persamaan Diverensial
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Statistika Chapter 4 Probability.
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Parabola Parabola.
Pertemuan 24 Teknik Searching
Two-and Three-Dimentional Motion (Kinematic)
Pendugaan Parameter (II) Pertemuan 10
KURVA INDIFFERENCE II.
FACTORING ALGEBRAIC EXPRESSIONS
Matematika Pertemuan 16 Matakuliah : D0024/Matematika Industri II
EKONOMI INTERNASIONAL
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
KURVA INDIFFERENCE II.
6. APLIKASI PRINSIP EKONOMI DALAM BISNIS; PRODUKSI
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Menentukan Maksimum atau Minimum suatu fungsi
Differensial.
Al Muizzuddin F Matematika Ekonomi Lanjutan
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
BAB 9 TEORI PRODUKSI. 2 Introduction Our focus is the supply side. The theory of the firm will address: How a firm makes cost-minimizing production decisions.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Diferensial Fungsi Majemuk
HANDLING RUSH PRESIDENT UNIVERSITY NURLAELA RIZKINA.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Diferensial Fungsi Majemuk Diferensial Parsial Diferensial Total Chain rule dll http://rosihan.web.id

Diferensial Parsial Diferensial Total http://rosihan.web.id

High Order Partial Derivatives Fungsi dengan lebih dari satu variabel bebas juga dapat diturunkan lebih dari satu kali Turunan parsial z = f (x,y)  kalau kontinyu dapat mempunyai turunannya sendiri.  empat turunan parsial : Dapat dilambangkan fxx, fxy, fyx, dan fyy fxy = fyx http://rosihan.web.id

Partial derivatives Cobb-Douglas production function (+=1) Q = 96K0.3 L0.7 http://rosihan.web.id

Techniques of partial differentiation Market model http://rosihan.web.id

Geometric interpretation of partial derivatives Market model http://rosihan.web.id

Market model http://rosihan.web.id

Q S D P D1 Q S1 D P S0 http://rosihan.web.id

Market model Q S0 D P S1 Q S0 D1 D0 P Q0 Q1 http://rosihan.web.id

National-income model Y = C + I0 + G0 C = a + b(Y-T); b = MPC (a > 0; 0 < b < 1) T=d+tY; t = MPT (d > 0; 0 < t < 1) Y=( a-bd+I+G)/(1-b+tb) C=(b(1-t)(I+G)+a-bd)/ (1-b+tb) T=(t(I+G)+ta+d(1-b))/ (1-b+tb) http://rosihan.web.id

Input-output model ∂x1/∂d1 = b11 http://rosihan.web.id

Note on Jacobian Determinants Use Jacobian determinants to test the existence of functional dependence between the functions /J/ Not limited to linear functions as /A/ (special case of /J/ If /J/ = 0 then the non-linear or linear functions are dependent and a solution does not exist. http://rosihan.web.id

Total Differentials http://rosihan.web.id

Diferensial Total http://rosihan.web.id

Let Utility function U = U (x1, x2, …, xn) Differentiation of U wrt x1..n U/ xi is the marginal utility of the good xi dxi is the change in consumption of good xi http://rosihan.web.id

Finding the total derivative from the differential Given a function y = f (x1, x2, …, xn) Total differential dy is: Total derivative of y with respect to x2 found by dividing both sides by dx2 (partial total derivative) http://rosihan.web.id

Chain rule (kaidah rantai) This is a case of two or more differentiable functions, in which each has a distinct independent variable. where z = f(g(x)), i.e., z = f(y), i.e., z is a function of variable y and y = g(x), i.e., y is a function of variable x If R = f(Q) and if Q = g(L) http://rosihan.web.id

Kaidah Rantai z x y t Pohon rantai http://rosihan.web.id

Kaidah Rantai Kalau w = w(x,y,z) dan x = x(u,v), y = y(u,v), dan z = z(u,v), maka pohon rantai : w y v z u x http://rosihan.web.id

Kalau z = z(x,y), dan x = x(s), y = y(s), dan s = s(u,v), maka pohon rantai menjadi : http://rosihan.web.id