Distribusi Hipergeometrik Distribusi Poisson.

Slides:



Advertisements
Presentasi serupa
DISTRIBUSI PROBABILITAS YANG UMUM
Advertisements

Analisa Data Statistik Chap 5: Distribusi Probabilitas Diskrit
Analisa Data Statistik Chap 5: Distribusi Probabilitas Diskrit
Distribusi Hipergeometrik
DISTRIBUSI DISKRIT DAN KONTINYU
PROBABILITAS.
SEKOLAH TINGGI ILMU STATISTIK
Metode Statistika II Pertemuan 2 Pengajar: Timbang Sirait
DISTRIBUSI PELUANG.
BAB XIII Distribusi Binomial
STATISTIK PROBABILITAS
BY MUH.YUSAN NAIM. BAB II DISTRIBUSI BINOMIAL DIGUNAKAN UNTUK MENYELESAIKAN PERSOALAN-PERSOALAN PROBABILITAS VARIABEL RANDOM YANG BERSIFAT BINOMIAL ATAU.
DISTRIBUSI TEORITIS.
Probabilitas & Distribusi Probabilitas
Distribusi Probabilitas Diskret
Peubah Acak Diskret Khusus
DISTRIBUSI TEORETIS.
DISTRIBUSI PROBABILITAS DISKRET
BAB IX DISTRIBUSI TEORITIS
FUNGSI PROBABILITAS Pertemuan ke 6.
DISTRIBUSI TEORETIS Tujuan :
DISTRIBUSI POISSON.
Peubah Acak (Random Variable)
Variabel Acak Diskrit dan Distribusinya
F2F-7: Analisis teori simulasi
VARIABEL ACAK DAN NILAI HARAPAN
Distribusi Variabel Acak
DISTRIBUSI PROBABILITAS / PELUANG
Dosen pengasuh: Moraida hasanah, S.Si.,M.Si
DISTRIBUSI PROBABILITAS diskrit
DISTRIBUSI TEORITIS.
OLEH: RESPATI WULANDARI, M.KES
(PROBABILITAS LANJUTAN) DISTRIBUSI PELUANG DISKRIT DAN KONTINU
DISTRIBUSI PELUANG Jika melakukan undian sebuah mata uang maka peristiwa yang terjadi muncul = G dan A. Jika X menyatakan banyaknya G maka X = 0, 1 Maka.
KONSEP STATISTIK.
DISTRIBUSI BINOIMIAL DAN POISSON
Bagian 4 – DISTRIBUSI DISKRIT Laboratorium Sistem Produksi 2004
Sebaran Peluang Diskrit (II) Pertemuan 6
DISTRIBUSI PROBABILITAS
Probabilitas dan Statistika
DISTRIBUSI PROBABILITAS TEORITIS
Distribusi Probabilitas
DISTRIBUSI PROBABILITAS
PROBABILITAS dan DISTRIBUSI
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1
Distribusi binomial Distribusi binomial
Distribusi Probabilitas Diskret
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
SEBARAN PEUBAH ACAK DISKRIT KHUSUS 3
DISTRIBUSI PROBABILITAS DISKRIT (1)
DISTRIBUSI PROBABILITAS DISKRIT (1)
Distribusi Teoritis Peluang Diskrit
DISTRIBUSI PELUANG HYPERGEOMETRI
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2
Distribusi Probabilitas Variabel Acak Diskrit
DISTRIBUSI-DISTRIBUSI TEORITIS
NOTASI SEBARAN BINOMIAL
Distribusi Probabilitas Diskret
Distribusi Probabilitas Variabel Acak Diskrit
DISTRIBUSI PROBABILITAS TEORITIS
DISTRIBUSI VARIABEL RANDOM DISKRIT
Distribusi Probabilitas
DISTRIBUSI PELUANG DISKRIT
DISTRIBUSI PROBABILITAS YANG UMUM
DISTRIBUSI PROBABILITAS TEORITIS
Konsep Probabilitas.
DISTRIBUSI PROBABILITAS YANG UMUM
. Distribusi Binomial adalah suatu distribusi probabilitas yang dapat digunakan bilamana suatu proses sampling dapat diasumsikan sesuai dengan proses.
DISTRIBUSI PROBABILITAS DISKRIT (1)
DISTRIBUSI BINOMIAL Suatu percobaan binomial yang diulang sebanyak n kali dengan P(sukses) = P(S) = p dan P(gagal) = P(G) = 1 – p = q adalah tetap pada.
Transcript presentasi:

Distribusi Hipergeometrik Distribusi Poisson. Distribusi yang tergolong ke dalam distribusi teoretis diskrit antara lain : Distribusi Binomial. Distribusi Hipergeometrik Distribusi Poisson.

DISTRIBUSI BINOMIAL Pengertian dan Ciri-ciri Distribusi Binomial. Distribusi Binomial adalah suatu distribusi teoretis yang menggunakan variabel random diskrit yang terdiri dari dua kejadian yang berkomplemen. Misal : Ya-tidak, Sukses-Gagal, Kepala-Ekor, Baik-Buruk.

Ciri-ciri Distribusi Binomial Setiap percobaan hanya memiliki dua peristiwa. Probabilitas satu peristiwa adalah tetap, tidak berubah setiap percobaan. Percobaannya bersifat independen, artinya peristiwa dari suatu percobaan tidak mempengaruhi dalam percobaan lainnya. Jumlah percobaan yang merupakan komponen percobaan binomial harus tertentu.

Contoh : Seorang mahasiswa menghadapi 6 pertanyaan pilihan berganda, setiap pertanyaan memiliki 5 alternatif jawaban. Jika dalam menjawab pertanyaan, mahasiswa tersebut berspekulasi, maka probabilitas menjawab pertanyaan adalah : - menjawab benar, P(B) = 1/5 - menjawab salah, P(S) = 1 – 1/5 = 4/5

2. Rumus Distribusi Binomial a. Rumus Binomial suatu peristiwa. Probabilitas suatu peristiwa dapat dihitung dengan mengalikan kombinasi susunan dengan probabilitas salah satu susunan. P(X = x) = b (x ; n, p ) = nCx . px . qn-x dimana : nCx = koefisien binomial x = banyaknya peristiwa sukses. n = banyaknya percobaan. p = probabilitas peristiwa sukses q = 1 – p ( probabilitas peristiwa gagal)

Contoh : a. Mata dadu 5 muncul 1 kali. Sebuah dadu dilemparkan ke atas sebanyak 4 kali. Tentukan probabilitas dari peristiwa berikut : a. Mata dadu 5 muncul 1 kali. b. Mata dadu genap muncul 2 kali. c. Mata dadu 2 dan 6 muncul 4 kali.

b. Probabilitas Binomial Kumulatif. Probabilitas binomial kumulatif adalah probabilitas dari peristiwa binomial lebih dari satu sukses.

Contoh : Sebanyak mahasiswa akan mengikuti ujian sarjana dan diperkirakan probabilitas kelulusannya adalah 0,7. Hitunglah probabilitas : a. paling banyak 2 orang lulus. b. yang akan lulus antara 2 sampai 3 orang. c. paling sedikit 4 di antaranya lulus.

3. Rata-rata, Varians, dan Simpangan Baku Distribusi Binomial. Rata-rata (  ) = n . p Varians ( 2) = n . p . q Simpangan Baku () =

DISTRIBUSI POISSON 1. Pengertian Distribusi Poisson Distribusi Poisson termasuk distribusi teoretis yang memakai variabel random diskrit. Distribusi Poisson adalah distribusi nilai-nilai bagi suatu variabel random X, yaitu banyaknya percobaan yang terjadi dalam suatu interval waktu tertentu atau di suatu daerah tertentu.

2. Rumus Distribusi Poisson Dimana : = rata-rata distribusi = 0, 1, 2, 3, …. e = konstanta 2, 71828

3. Rata-rata, Varians, dan Simpangan baku distribusi Poisson E(X) =  =  = n . p Varians: E(X - )2 =  2 = n . P Simpangan Baku :  =  n . p

DISTRIBUSI HIPERGEOMETRIK. Pengertian Distribusi Hipergeometrik. Distribusi hipergeometrik juga termasuk distribusi teoretis yang menggunakan variabel diskrit dengan 2 kejadian yang berkomplemen, seperti distribusi binomial.

Perbedaan Distribusi Binomial dan Distribusi Hipergeometrik, adalah : Perbedaan utama antara distribusi binomial dan distribusi hipergeometrik adalah : Pada distribusi binomial pengambilan sampel dilakukan dengan pengembalian. Pada distribusi hipergeometrik pengambilan sampel dilakukan tanpa pengembalian.

2. Rumus Distribusi Hipergeometrik p(x)= probabilitas x sukses dalam n percobaan n = jumlah percobaan N = jumlah elemen dalam populasi r = jumlah elemen dalam populasi yang sukses

Contoh: Dari penelitian golongan darah mahasiswa pada sebuah universitas, diketahui bahwa dari 10 mahasiswa terdapat: 2 mahasiswa bergolongan darah A, 5 mahasiswa bergolongan darah B, 3 mahasiswa bergolongan darah O. Apabila diambil 5 orang mahasiswa, berapa probabilitas 1 orang bergolongan darah A, 2 orang B dan 2 orang O.