Matematika Informatika 1

Slides:



Advertisements
Presentasi serupa
Matematika Diskrit (Solusi pertemuan 6)
Advertisements

Matematika Diskrit Dr.-Ing. Erwin Sitompul
BAB II HIMPUNAN.
Dasar Logika Matematika
Waniwatining II. HIMPUNAN 1. Definisi
Himpunan Pertemuan Minggu 1.
Himpunan.
MATEMATIKA BISNIS HIMPUNAN.
Logika Matematika Konsep Dasar
Bahan kuliah IF2120 Matematika Diskrit
MATEMATIKA BISNIS BY : ERVI COFRIYANTI.
LOGIKA MATEMATIKA PERTEMUAN 2 HIMPUNAN II
BAB II HIMPUNAN.
MATEMATIKA DISKRET PERTEMUAN 2 HIMPUNAN
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit bab 2-Himpunan
HIMPUNAN Rani Rotul Muhima.
Pertemuan ke 4.
DPH1A3-Logika Matematika
HIMPUNAN.
Bahan kuliah Matematika Diskrit
Oleh : Devie Rosa Anamisa
Pertemuan ke 4.
MATEMATIKA DISKRIT PERTEMUAN KE 2 SAFITRI JAYA, S.Kom, M.T.I
TEORI HIMPUNAN sugiyono.
Matematika Diskrit bab 2-Himpunan
LOGIKA MATEMATIKA PERTEMUAN 1 HIMPUNAN I
Logika Matematika Teori Himpunan
Pendahuluan (Himpunan dan Sub himpunan)
Bahan kuliah Matematika Diskrit
Bahan kuliah Agribisnis study club Frogram Study Agribisnis
BAB 1 Himpunan
BAB II HIMPUNAN.
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN MATEMATIKA EKONOMI 1.
LOGIKA MATEMATIS TEORI HIMPUNAN Program Studi Teknik Informatika
Matematika Diskrit (1) Himpunan.
Himpunan Himpunan adalah kumpulan objek-objek yang berbeda.
Matematika Diskrit bab 2-Himpunan
Teori Himpunan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
BAB II HIMPUNAN.
IF34220 Matematika Diskrit Nelly Indriani W. S.Si., M.T
Pertemuan III Himpunan
Mata Kuliah: MATEMATIKA DISKRIT Harni Kusniyati
Matematika Diskrit Himpunan
BAB II HIMPUNAN.
Himpunan (Lanjutan).
HIMPUNAN.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
HIMPUNAN Oleh Cipta Wahyudi.
Himpunan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
Logika Matematika Teori Himpunan
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN.
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Himpunan.
Logika Matematika Teori Himpunan
Heru Nugroho, S.Si., M.T. No Tlp : Semester Ganjil TA
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Logika Matematika Himpunan Sri Nurhayati.
Dasar Logika Matematika
BAB 1 Himpunan
BAB 1 HIMPUNAN.
BAB 1 HIMPUNAN.
1 Himpunan Bahan kuliah Matematika Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Matematika Diskrit bab 2-Himpunan Himpu nan Oleh : Sri Supatmi,S.Kom.
1 Himpunan Bahan kuliah IF2091 Struktur Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Transcript presentasi:

Matematika Informatika 1 Himpunan Matematika Informatika 1

Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Himpunan biasanya dinyatakan oleh huruf besar, A, B, X, Y, ……, bila perlu dengan indeks, dan elemennya dinyatakan oleh huruf kecil a, b, x, y, ……, bila perlu dengan indeks pula.

Keanggotaan Himpunan x  A : x merupakan anggota himpunan A; x  A : x bukan merupakan anggota himpunan A.    Contoh 1. Misalkan: A = {1, 2, 3, 4}, R = { a, b, {a, b, c}, {a, c} } K = {{}} maka 3  A {a, b, c}  R c  R {}  K {}  R

Contoh 2. Bila P1 = {a, b}, P2 = { {a, b} }, P3 = {{{a, b}}}, maka P1  P2 P1  P3 P2  P3

Cara Penyajian Himpunan Pendaftaran/tabular form Setiap anggota himpunan didaftarkan secara rinci. Contoh 3. - Himpunan empat bilangan asli pertama: A = {1, 2, 3, 4}. - Himpunan lima bilangan genap positif pertama: B = {4, 6, 8, 10}. - C = {kucing, a, Amir, 10, paku} - R = { a, b, {a, b, c}, {a, c} } - C = {a, {a}, {{a}} } - K = { {} } - Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 } - Himpunan bilangan bulat ditulis sebagai {…, -2, -1, 0, 1, 2, …}.

2. Bentuk Pencirian/ set builder form

3. Simbol-simbol Baku P = himpunan bilangan bulat positif = { 1, 2, 3, ... } N = himpunan bilangan alami (natural) = { 1, 2, ... } Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... } Q = himpunan bilangan rasional R = himpunan bilangan riil C = himpunan bilangan kompleks

Diagram Venn Contoh 5. Misalkan U = {1, 2, …, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}. Diagram Venn:

Kardinalitas Jumlah elemen di dalam A disebut kardinal dari himpunan A. Notasi: n(A) atau A    Contoh 6. (i) B = { x | x merupakan bilangan prima lebih kecil dari 20 }, atau B = {2, 3, 5, 7, 11, 13, 17, 19} maka B = 8 (ii) T = {kucing, a, Amir, 10, paku}, maka T = 5 (iii) A = {a, {a}, {{a}} }, maka A = 3

Himpunan kosong (null set)

Himpunan semesta (universal set) Notasi: U atau S Untuk membatasi himpunan yang dibicarakan Setiap himpunan yang dibicarakan selalu ada dalam himpunan semesta Contoh: Misalkan U = {1, 2, 3, 4, 5} A dan B adalah himpunan bagian dari U, dengan A = {1, 3, 5} dan B = {2, 3, 4}

Himpunan Bagian (Subset)

Proper dan Improper Subset

Himpunan yang Sama

Himpunan yang Ekivalen

Himpunan Saling Lepas

Himpunan Kuasa(Power Set)

Operasi Terhadap Himpunan

Hukum-hukum Himpunan Disebut juga sifat-sifat (properties) himpunan Disebut juga hukum aljabar himpunan

Himpunan Berhingga dan tak berhingga

Prinsip Inklusi-Eksklusi