Operations Management

Slides:



Advertisements
Presentasi serupa
MASALAH PENUGASAN (ASSIGNMENT PROBLEM)
Advertisements

MASALAH PENUGASAN RISET OPERASI.
MODEL PENUGASAN Bentuk khusus transportasi
ASSIGNMENT PROBLEM (MASALAH PENUGASAN)
6s-1Linear Programming William J. Stevenson Operations Management 8 th edition OPERATIONS RESEARCH Rosihan Asmara
ASSIGMENT PROBLEM AND NETWORK ANALYSIS
MASALAH PENUGASAN (ASSIGNMENT PROBLEM)
ASSIGNMENT PROBLEM (Masalah Penugasan)
MODEL PENUGASAN (ASSIGNMENT PROBLEM)
Riset Operasional - dewiyani
2. MASALAH TRANSPORTASI TAK SEIMBANG
LINEAR PROGRAMMING METODE SIMPLEX
METODE PENUGASAN.
MANAJEMEN TENAGA KERJA Manajemen tenaga kerja merupakan ma salah penting dan menuntut tanggung ja wab paling besar Dalam kenyataannya, tenaga kerja adalah.
Operations Management
PERSOALAN PENUGASAN (ASSIGNMENT PROBLEM)
PERTEMUAN PERSOALAN PENUGASAN OLEH Ir. Indrawani Sinoem, MS.
Operations Management
MASALAH PENUGASAN Seperti masalah transportasi, masalah pe-
Operations Management
Operations Management
MANAJEMEN TENAGA KERJA
Masalah Penugasan.
MODEL PENUGASAN (HUNGARIAN METHOD)
Operations Management
Assignment (Penugasan)
2. MASALAH TRANSPORTASI TAK SEIMBANG
Penugasan (Assigment) - Minimalisasi Sapta Candra Miarsa,ST.,MT.
Operations Management
RISET OPERASIONAL 1 RISET OPERASI
Operations Management
Operations Management
assignment Problem (penugasan)
Operations Management
MASALAH PENUGASAN RISET OPERASI.
UNIVERSITAS MERCUBUANA
Operations Management
Model Penugasan.
Penugasan (Assigment) - Maksimalisasi Sapta Candra Miarsa,ST.,MT.
Model Penugasan.
Operations Management
Operations Management
Operations Management
MODEL PENUGASAN Pertemuan 07
Masalah Penugasan (Assignment Problem)
Model Penugasan.
Operations Management
Masalah penugasan.
SOAL Seleaikanlah sistem persamaan linear berikut dengan menggunakan metode Gauss-Jordan 3 X1+2 X2 + X3 = 7 3 X1- 2 X2 + X3 = 2 -3 X1+2 X2 + X3 = 4 HiJurusan.
Operations Management
METODE PENUGASAN.
Operations Management
Operations Management
MANAJEMEN TENAGA KERJA
Operations Management
Operations Management
Operations Management
Pemodelan Programasi Linier dan Solusi Manual Model Assignment week 09
PERSOALAN PENUGASAN.
Operations Management
Operations Management
METODE PENUGASAN.
Operations Management
MASALAH PENUGASAN RISET OPERASI.
RISET OPERASIONAL 1 RISET OPERASI
Operations Research Linear Programming (LP)
PENUGASAN (ASSIGMENT)
Operations Management
6s-1Linear Programming William J. Stevenson Operations Management 8 th edition OPERATIONS RESEARCH Rosihan Asmara
6s-1LP Metode Simpleks William J. Stevenson Operations Management 8 th edition RISETOperasi.
Transcript presentasi:

Operations Management William J. Stevenson Operations Management 8th edition OPERATIONS RESEARCH

MASALAH PENUGASAN (ASSIGMENT PROBLEM) Masalah yang berhubungan dengan penugasan optimal dari bermacam-macam sumber yang produktif atau personalia yang mempunyai tingkat efisiensi yang berbeda-beda untuk tugas-tugas yang berbeda-beda pula

Tabel Matrik biaya A Rp 15 Rp 20 Rp 18 Rp 22 B 14 16 21 17 C 25 20 23 Masalah Minimisasi Contoh : Suatu perusahaan mempunyai 4 pekerjaan yang berbeda untuk diselesaikan oleh 4 karyawan Tabel Matrik biaya Pekerjaan Karyawan I II III IV A Rp 15 Rp 20 Rp 18 Rp 22 B 14 16 21 17 C 25 20 23 D 18

Langkah-langkah Metode Hungarian Mengubah Matriks biaya menjadi matriks opportunity cost: Caranya: pilih elemen terkecil dari setiap baris, kurangkan pada seluruh elemen baris tersebut Reduced cost matrix Pekerjaan Karyawan I II III IV A Rp 15 Rp 20 Rp 18 Rp 22 B 14 16 21 17 C 25 20 23 D 18 5 3 7 2 7 3 3 5 1 2 2

Reduced cost matrix I II III IV A 5 3 7 B 2 C D 1 1 5 1 Reduced-cost matrix terus dikurangi untuk mendapatkan total-opportunity-cost matrix. pilih elemen terkecil dari setiap kolom pada RCM yang tidak mempunyai nilai nol, kurangkan pada seluruh elemen dalam kolom tersebut. Total opportunity cost matrix Reduced cost matrix Pekerjaan Karyawan I II III IV A 5 3 7 B 2 C D 1 1 5 1

Penugasan optimal adalah feasible jika : Melakukan test optimalisasi dengan menarik sejumlah minimum garis horisontal dan/atau vertikal untuk meliput seluruh elemen bernilai nol Penugasan optimal adalah feasible jika : jumlah garis = min(jumlah baris atau kolom) Test of optimality Pekerjaan Karyawan I II III IV A 5 1 7 B 2 3 C D

Revised matrix dan Test of optimality I II III IV A 5 1 7 B 2 3 C D Untuk merevisi total-opportunity matrix, pilih elemen terkecil yang belum terliput garis (1) untuk mengurangi seluruh elemen yang belum terliput Tambahkan jumlah yang sama pada seluruh elemen yang mempunyai dua garis yang saling bersilangan Ulangi langkah 3 Test of optimality Revised matrix dan Test of optimality Pekerjaan Karyawan I II III IV A 5 1 7 B 2 3 C D 4 6 1 4 2 6 2

Revised matrix dan Test of optimality Melakukan test optimalisasi dengan menarik sejumlah minimum garis horisontal dan/atau vertikal untuk meliput seluruh elemen bernilai nol Karena jumlah garis = min( jumlah baris atau kolom) maka matrik penugasan optimal telah tercapai Revised matrix dan Test of optimality 2 1 D 5 C 3 B 7 A IV III II I Pekerjaan Karyawan 4 6

2 1 D 5 C 3 B 7 A IV III II I 4 6 Tabel Matrik biaya I II III IV A Matrix optimal 2 1 D 5 C 3 B 7 A IV III II I Pekerjaan Karyawan 4 6 2 1 4 3 Tabel Matrik biaya Pekerjaan Karyawan I II III IV A Rp 15 Rp 20 Rp 18 Rp 22 B 14 16 21 17 C 25 20 23 D 18

Skedul penugasan optimal - III Rp 18 B - I 14 C - II 20 D - IV 16 Rp 68 Karyawan B ditugaskan untuk pekerjaan satu karena baris B hanya mempunyai satu nilai nol

Masalah Maksimisasi Contoh : Suatu perusahaan mempunyai 5 pekerjaan yang berbeda untuk diselesaikan oleh 5 karyawan Tabel Matrik keuntungan Pekerjaan Karyawan I II III IV V A Rp 10 Rp 12 Rp 8 Rp 15 B 14 10 9 15 13 C 8 7 12 D 16 11 E 17

Langkah-langkah Metode Hungarian Mengubah Matriks biaya menjadi matriks opportunity-loss: Caranya: pilih elemen terbesar dari setiap baris, kurangkan pada seluruh elemen baris tersebut Opportunity-loss matrix Pekerjaan Karyawan I II III IV V A Rp 10 Rp 12 Rp 8 Rp 15 B 14 10 9 15 13 C 8 7 12 D 16 11 E 17 5 3 5 7 1 5 6 2 3 4 5 4 3 1 8 5 7 4 3 6

Total Opportunity-loss matrix 17 11 14 13 10 E 12 Rp 15 V 16 8 15 D 7 9 C B Rp 8 Rp 10 Rp 12 A IV III II I Pekerjaan Karyawan 5 3 1 6 2 4 4 2 2 2 5 4 3 4 2 3 1 2 2 2 5 7 6 3 2

Total Opportunity-loss matrix Karena jumlah garis = jumlah baris atau kolom maka matrik penugasan optimal telah tercapai Total Opportunity-loss matrix 17 11 14 13 10 E 12 Rp 15 V 16 8 15 D 7 9 C B Rp 8 Rp 10 Rp 12 A IV III II I Pekerjaan Karyawan 5 3 1 6 2 4 2 4 5 3 1

SEKIAN