K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.

Slides:



Advertisements
Presentasi serupa
Function.
Advertisements

2. Introduction to Algorithm and Programming
Digital Logic Boolean Algebra
Digital Logic Symbols For Logic gates
RANGKAIAN LOGIKA KOMBINASIONAL
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
TEKNIK PENGINTEGRALAN
ILMU KOM PUTER PRODI ILKOMP UGM GP DALIYO Daliyo 1.
V. PENYEDERHANAAN PERSAMAAN LOGIKA
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Ruang Contoh dan Peluang Pertemuan 05
MAP ENTERED VARIABLES (MEV)
Masalah Transportasi II (Transportation Problem II)
Logic and Computer Design Fundamental
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Bayu Priyambadha, S.Kom.  Classes, which are the "blueprints" for an object and are the actual code that defines the properties and methods.  Objects,
Mapping dari ERD ke Tabel
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
OPERATOR DAN FUNGSI MATEMATIK. Operator  Assignment operator Assignment operator (operator pengerjaan) menggunakan simbol titik dua diikuti oleh tanda.
Karnaugh Map.
Jartel, Sukiswo Sukiswo
Linear algebra Yulvi zaika.
Induksi Matematika.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
PERTEMUAN 4 METODE PETA KARNAUGH
Cartesian coordinates in two dimensions
Logic and Computer Design Fundamental
Konsep pemrograman LOOP
Cartesian coordinates in two dimensions
MK SISTEM DIGITAL SESI 5 PENYEDERHANAAN RANGKAIAN
TEKNIK DIGITAL.
XXII. MEMORY DAN PROGRAMMABLE LOGIC
Peta Karnaugh.
Pengujian Hipotesis (I) Pertemuan 11
Dasar-Dasar Pemrograman
Parabola Parabola.
TOPIK 3 BENTUK-BENTUK NORMAL.
VECTOR VECTOR IN PLANE.
GERBANG LOGIKA DAN ALJABAR BOOLEAN.
MATA KULIAH TEKNIK DIGITAL
BILANGAN REAL BILANGAN BERPANGKAT.
REAL NUMBERS EKSPONENT NUMBERS.
Rectangles, Rhombuses, and Squares
FACTORING ALGEBRAIC EXPRESSIONS
Karnaugh map.
2 x 2 x 2 is written as 2^3. 2 x 2 x 2 x 2 x 2 is written as 2^5
Master data Management
Pertemuan 4 CLASS DIAGRAM.
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
OLEH : HIDAYAT JURUSAN TEKNIK KOMPUTER UNIKOM 2009
How Can I Be A Driver of The Month as I Am Working for Uber?
BAB III PENYEDERHANAAN PERSAMAAN LOGIKA
PENYEDERHANAAN FUNGSI BOOLE
Operasi Matriks Dani Suandi, M.Si..
Penyederhanaan Fungsi Boolean
III. ALJABAR BOOLEAN DAN GERBANG LOGIKA
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 3.
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
III. ALJABAR BOOLEAN DAN GERBANG LOGIKA
III. ALJABAR BOOLEAN DAN GERBANG LOGIKA
INTERROGATIVE ADJECTIVE. DEFINITION FUNCTION EXAMPLE QUESTION.
Sistem Digital BAB 2 Aljabar Boolean
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
WINTER Template COLOUR CARD 01 Template. PowerPoint chart object 02.
Transcript presentasi:

K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification Difficult to determine which rule should be used in a particular step K-Map is a systematic way to find a minimum-cost expression Base on the property below in Boolean algebra xy’+xy = x (x + y)(x + y’) = x

Minterm & maxterm minterm (mi) can be viewed as binary representation of index i maxterm (Mi) can be viewed as the complement of binary representation of index I (Mi is true when Mi = 0) The range of i is [0,2n-1] which n is the no. of variables in the function

Minterm & maxterm index x1 x2 x3 Minterm (mi) Maxterm (Mi) x1' x2' x3' x1' x2' x3' x1 + x2 +x3 1 x1' x2' x3 x1 + x2 +x3' 2 x1' x2 x3' x1 + x2' +x3 3 x1' x2 x3 x1 + x2' + x3' 4 x1 x2' x3' x1' + x2 + x3 5 x1 x2' x3 x1' + x2 +x3' 6 x1 x2 x3' x1' + x2' +x3 7 x1 x2 x3 x1' + x2' +x3'

Minterm & maxterm Try to look at minterm 0 and maxterm 0 x1’x2’x3’ =(x1 + x2 + x3)’ (DeMorgan’s Law) By definition, mi is complement of Mi

Peta Karnaught dengan 3 variabel f (ABC) Metode peta karnaught untuk menyederhana kan persamaan logika. Peta Karnaught dengan 2 variabel f(AB) B’ B A’ A’ B’ A’ B A A B’ A B Peta Karnaught dengan 3 variabel f (ABC) B’C’ B’C BC BC’ A’ A’B’C’ A’B’C A’BC A’BC’ A AB’C’ AB’C ABC ABC’

Lanjutan ….. c. Peta Karnaught dengan 4 variabel f(ABCD) C’D’ C’D CD

+ Lanjutan ….. d. Peta Karnaught dengan 5 variabel (ABCDE) A A’ D’E’

K-map Each square in a K-map corresponds to a minterm (and maxterm) variables are arranged in Gray code

2-variable and 3-variable K-map

Implicant Implicant is any rectangles that cover 2n minterms For 22 minterms, it can be in the form of 1 x 4 or 2 x 2 6 implicants for group of 1 minterm (red) 5 implicants for group of 2 minterms (green) 1 implicants for group of 4 minterms (blue) Total is 12 implicants

Prime Implicant (PIs) They are the largest implicant rectangle you can drawn on K-map A prime implicant is prime when there is no other implicant covers it

Essential prime implicants (EPIs) Essential minterm is the minterm covered by only 1 PI. The corresponding PI is called essential PI. For minterm 14, only red circle includes this minterm Red circle is an EPI For minterms 1,3,9, only blue circle can include them Blue circle is an EPI Green circle is not EPI, because: minterm 15, covered by both green circle and red circle, is not essential minterm 11, covered by both green circle and blue circle, is not essential

Simplification of K-map Generate all PIs Find the largest circles (group of minterms) If EPIs can cover all minterms, then it is answer. Otherwise focus on uncovered minterms, generate secondary EPIs and repeat.

Step 1 Generate PIs Blue circles are PIs They are the largest group of minterms you can find on this map

Step 2 Find EPIs Red circles are EPIs Minterm 11, 13 and 14, can only be cover by these 3 red circles

Step 3 EPIs cannot cover minterm 7 Choose between green/blue circle to cover minterm 7 Green is chosen as it is larger Less cost / literals Green – x1’x3 Blue – x1’x2x4

Final Final result is obtained x3x4’ + x2’x3 + x1’x3 + x2x3’x4

K-Map Example 1 f(A,B,C,D) = Sm(0,5,7,8,10,12,14,15) = B’C’D’ + AD’ + A’BD + BCD

K-Map Example 2 f(A,B,C,D,E) = Sm(0,2,4,7,10,12,13,18,23,26,28,29)

K-Map Example 3 f(A,B,C,D) = ∏M(0,1,2,3,6,9,14) f’ = m(0,1,2,3,6,9,14) f’ = A’B’ + B’C’D + BCD’ f = (A+B) (B+C+D’) (B’+C’+D)

K-Map Example 4 F=∑m(0,2,3,4,14,15) D=∑m(1,11,13) Don’t cares can be treated as 1’s or 0’s if it is advantageous to do so We will use blue circle (A’B’) instead of red one (A’B’C) because it contain less literals in the term

K-Map Example 5 F(A,B,C,D) = ∑m(1,3,5,7,9) + ∑d(6,12,13)

c = f(x,y,z) = (3,5,6,7) s = (1,2,4,7) c: s: y y z x c = xy+yz+xz s = x’y’z+x’yz’+xy’z’+xyz y y z x

DON’T CARE CONDITION Kondisi Don’t Care adalah suatu kondisi yang dapat diasumsikan mempunyai keadaan 0 atau 1 yang juga ditandai dengan X dan untuk menyederhanakan ekspresi boolean menggunakan peta. Contoh : Sederhanakan fungsi Boolean sbb : F(A,B,C,D) =  ( 1,3,7,11,15 ) Yang mempunyai don’t care condition sbb : d(A,B,C,D) =  ( 0,2,5 )

F = CD + A’B’ F = CD + A’B Jawab : C’D’ C’D CD CD’ A’B’ X 1 A’B AB AB’ AB AB’ C’D’ C’D CD CD’ A’B’ X 1 A’B AB AB’ atau F = CD + A’B’ F = CD + A’B

Don’t Care

Latihan Sederhanakan fungsi boolean berikut dengan menggunakan K-Map. F=x’yz + x’yz’ + xy’z’ + xy’z Jawab: F=x’y + xy’ Sederhanakan fungsi boolean berikut dengan menggunakan K-Map F=x’yz + xy’z’ + xyz + xyz’ Jawab: F = yz + xz’

Latihan Sederhanakan fungsi boolean berikut dengan menggunakan K-Map F=A’C + A’B + AB’C + BC Jawab: F = C + A’B F=∑(0,2,4,5,6) Jawab: F=z’ + xy’

Latihan Sederhanakan fungsi boolean berikut dengan menggunakan K-Map F(w,x,y,z)=∑(0,1,2,4,5,6,8,9,12,13,14) Jawab: F(w,x,y,z)=y’+w’z’+xz’ F=A’B’C’+B’CD’+A’BCD’+AB’C’ Jawab: F=B’D’+B’C’+A’CD’

Latihan Sederhanakan fungsi boolean berikut dengan menggunakan K-Map F(A,B,C,D,E)=∑(0,2,4,6,9,11,13,15,17,21,25,27,29,31) Jawab: F=BE+AD’E+A’B’E’