Sifat-Sifat Bangun Datar

Slides:



Advertisements
Presentasi serupa
MENGGAMBAR BANGUN RUANG
Advertisements

Sifat-sifat bangun datar
BANGUN DATAR DAN BANGUN RUANG
By : Satria Bayu Aji Class : VA / 33
SEGI EMPAT LAYANG-LAYANG TUTORIAL MATEMATIKA SMP KELAS VII
Bangun datar By fira 5A.
Sifat bangun datar by: naufal hakiim.
B A N G U N D A T A R Standar Kompetensi :
Mengidentifikasikan Sifat- Sifat Bangun Datar
Bangun Datar Geometri Koryna Aviory, S.Si, M.Pd..
B B A A N N G G U U N N D D A A T T A A R R Safitri Eka Ambarwati / PGSD Universitas Sanata Dharma.
GEOMETRI RUANG (DIMENSI 3)
Bangun datar By : bethi vb.
By:Kaizi Dmetri Kaffazaini
Assalamu’alaikum Wr.Wb.
Sifat-Sifat Bangun Datar
By:Sabrina Zulfa Dwi Maulida Va
sifat-sifat bangun datar
MATEMATIKA SMA KELAS X Oleh HARSUMDA.
Sifat Sifat Bangun Datar
BY:Elmira Shafa Annisa Kelas:5B
SEGI EMPAT.
TEOREMA PYTHAGORAS Oleh: YORA MIRTHA FANI
By:fathiria sabiikanurhaliza Part 2
PRISMA Prisma adalah bangun ruang yang dibatasi oleh 2 bangun datar yang kongruen dan sejajar, serta bidang lain sebagai sisi tegaknya UNSUR-UNSUR PRISMA.
Segitiga.
Assalamu’alakum Wr. Wb..
Pembuktian Teorema Pythagoras Dengan Garis Tinggi dan
Assalamu’alaikum Wr.Wb.
Konstruksi Geometris.
Jajar Genjang Trapesium Layang-layang
Konstruksi geometri Pertemuan ke-3
Syarat Dua Segitiga yang Sebangun
Sebangun dan Kongruen.
Segitiga dan Segiempat
Bahan Ajar Trigonometri - Oleh : Drs. Matrisoni
DAFTAR ISI BAB I BAB I BAB II KESEBANGUNAN BAB III
PETA KONSEP 1. Pendahuluan 2. Materi 3. Soal Latihan
KAMUS KECIL BANGUN DATAR
Bangun datar sederhana
Sifat-sifat Bangun Datar
Persegi panjang merupakan segiempat yang kedua pasang sisinya sejajar.
By : Eka Febianjani Putri Pendidikan Matematika / 3E
SIFAT – SIFAT SEGI EMPAT
Mengidentifikasikan Sifat- Sifat Bangun Datar
Sifat- sifat bangun datar
SEGI EMPAT LAYANG-LAYANG TUTORIAL MATEMATIKA SMP KELAS VII
PERSEGI.
Macam-macam Bangun Dat ar Sifat-sifat Bangun Datar
Sifat-Sifat Segi-Empat
MEDIA PEMBELAJARAN MATEMATIKA
MEDIA PEMBELAJARAN MATEMATIKA Keliling & Luas Segitiga
Aliyyah shafa ramadhina 5A/2
Assalamu ‘alaikum Wr Wb
TEOREMA PYTHAGORAS oleh : Winda afrianti D. W
KUBUS UNSUR-UNSUR KUBUS.
TUJUAN Merumuskan indikator dari SK-KD yang sesuai.
SEGITIGA DAN SEGIEMPAT
Tujuan Membuat indikator dari SK dan KD tentang segiempat
Keluarga Segiempat Segi empat Trapesium Jajaran genjang Belah ketupat
Geometri dan Pengukuran Kelas IV Semester 2
SEGI EMPAT DAN SEGI TIGA
Firda ( ) Yuliana Dwi Wijayanti ( )
SEGITIGA bidang datar yang dibatasi oleh tiga garis lurus dan membentuk tiga sudut.
Oleh : Cucun Supartini Santi Risnawati Persegi panjang Persegi Segitiga Jajar genjang Trapesium Belah Ketupat Layang-layang Luas Bangun Datar Bangun.
Peta Konsep. Peta Konsep C. Dalil-Dalil pada Segitiga.
بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ
Peta Konsep. Peta Konsep C. Dalil-Dalil pada Segitiga.
 Memahami macam-macam sudut Menerapkan Prosedur Gambar Bentuk – Bentuk Bidang A. Menggambar Sudut 1. Buat garis lurus AB sembarang AB.
Konstruksi Geometris. Untuk menggambar bentuk-bentuk geometri diperlukan ketrampilan dasar menggambar dengan menggunakan penggaris, jangka, segitiga,
Transcript presentasi:

Sifat-Sifat Bangun Datar Oleh: Ibnu Muhammad Tysan Next To Page 2

Next To Page 3 Trapesium Siku-siku Pada trapesium siku-siku, selain memiliki sepasang sisi yang sejajar, juga memiliki satu buah sudut siku-siku. Pada gambar di bawah ini. Merupakan trapesium siku-siku, dimana     A = 90° sifat trapesium siku-siku yaitu, salah satu kakinya tegak lurus terhadap sisi sejajarnya.

Segitiga Siku-Siku 1. Segitiga Siku-Siku Segitiga siku-siku dapat dibentuk dari sebuah persegi panjang dengan menarik salah satu garis diagonalnya. Perhatikan gambar berikut: Bidang ABCD adalah persegi panjang. Dengan menarik diagonal AC, akan terbentuk dua segitiga siku-siku yang sama dan sebangun (konruen) yaitu ΔABC dan ΔADC. Segitiga siku-siku mempunyai dua sisi siku-siku yang mengapit sudut siku-siku dan satu sisi miring (hypotenusa) ΔABC mempunyai ciri-ciri: AB dan BC sebagai sisi siku-siku, AC sebagai hypotenusa dan sudut ABC atau sudut B adalah sudut siku-siku (= 90°) Dalam sebuah segitiga siku-siku, hypotenusa selalu terletak di depan sudut siku-siku.