Diferensial Fungsi Majemuk

Slides:



Advertisements
Presentasi serupa
DIFERENSIAL FUNGSI SEDERHANA (ORDINARY DIFFERENTIAL)
Advertisements

Diferensial & Optimalisasi
2. Introduction to Algorithm and Programming
Elastisitas Tenaga kerja dan Elastisitas Kapital
DIFERENSIAL (fungsi sederhana)
LABOR MARKET Kuliah 12. THE LABOR MARKET..1  When firms respond to an increase in demand by stepping up production : Higher production requires an increase.
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Diferensial Fungsi Majemuk
Relation
Berbagai Teknik Optimisasi dan Peralatan Manajemen Baru
Economic models Consept of sets. Ingredients of mathematical models An economic model is merely a theoretical framework, and there is no inherent reason.
Regresi linier sederhana
Game Theory Purdianta, ST., MT..
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
TEKNIK PENGINTEGRALAN
Teorema Green.
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
Edge Detection (Pendeteksian Tepi)
WaterfallPrototyping RAD Incremental Prototyping Pendekatan SDLC.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Research Design (Cont). Jenis Perancangan Riset Jenis perancangan mana yg akan digunakan ? Peneliti perlu memikirkan tentang apa yang mereka inginkan.
Mekanisme Pasar Permintaan dan Penawaran
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI
Pertemuan 05 Sebaran Peubah Acak Diskrit
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.

 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
ANALISIS EKSPLORASI DATA
1 Pertemuan 25 Matakuliah: I0044 / Analisis Eksplorasi Data Tahun: 2007 Versi: V1 / R1 Analisis Regresi Ganda (I) : Pendugaan Model Regresi.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Dr. Nur Aini Masruroh Deterministic mathematical modeling.
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
Pasar Faktor Produksi.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
NON-LINIER OPTIMIZATION
Comparative Statics Slutsky Equation
Suharmadi Sanjaya - Matematika ITS. BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics.
I. Production with One Variable Input
PERSAMAAN DIFERENSIAL (PD)
Persamaan Diverensial
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
KOMUNIKASI DATA Materi Pertemuan 2.
Statistika Chapter 4 Probability.
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Parabola Parabola.
SKOPE EKONOMI POLITIK DAN PEMBANGUNAN
Pertemuan 24 Teknik Searching
Two-and Three-Dimentional Motion (Kinematic)
Pendugaan Parameter (II) Pertemuan 10
KURVA INDIFFERENCE II.
FACTORING ALGEBRAIC EXPRESSIONS
Matematika Pertemuan 16 Matakuliah : D0024/Matematika Industri II
EKONOMI INTERNASIONAL
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
KURVA INDIFFERENCE II.
6. APLIKASI PRINSIP EKONOMI DALAM BISNIS; PRODUKSI
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Menentukan Maksimum atau Minimum suatu fungsi
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Differensial.
Al Muizzuddin F Matematika Ekonomi Lanjutan
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
BAB 9 TEORI PRODUKSI. 2 Introduction Our focus is the supply side. The theory of the firm will address: How a firm makes cost-minimizing production decisions.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Diferensial Fungsi Majemuk
HANDLING RUSH PRESIDENT UNIVERSITY NURLAELA RIZKINA.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Diferensial Fungsi Majemuk Diferensial Parsial Diferensial Total Chain rule dll

Diferensial Parsial Diferensial Total

High Order Partial Derivatives Fungsi dengan lebih dari satu variabel bebas juga dapat diturunkan lebih dari satu kali Turunan parsial z = f (x,y)  kalau kontinyu dapat mempunyai turunannya sendiri.  empat turunan parsial : Dapat dilambangkan fxx, fxy, fyx, dan fyy fxy = fyx

Partial derivatives Cobb-Douglas production function (+=1) Q = 96K0.3 L0.7

Techniques of partial differentiation Market model Techniques of partial differentiation

Geometric interpretation of partial derivatives Market model Geometric interpretation of partial derivatives

Market model

Q S D P D1 Q S1 D P S0

Q S0 D P S1 Q S0 D1 D0 P Q0 Q1 Market model

National-income model Y = C + I0 + G0 C = a + b(Y-T); b = MPC (a > 0; 0 < b < 1) T=d+tY; t = MPT (d > 0; 0 < t < 1) Y=( a-bd+I+G)/(1-b+tb) C=(b(1-t)(I+G)+a-bd)/ (1-b+tb) T=(t(I+G)+ta+d(1-b))/ (1-b+tb) National-income model

Input-output model ∂x1/∂d1 = b11

Note on Jacobian Determinants Use Jacobian determinants to test the existence of functional dependence between the functions /J/ Not limited to linear functions as /A/ (special case of /J/ If /J/ = 0 then the non-linear or linear functions are dependent and a solution does not exist. Note on Jacobian Determinants

Total Differentials

Diferensial Total

Let Utility function U = U (x1, x2, …, xn) Differentiation of U wrt x1..n U/ xi is the marginal utility of the good xi dxi is the change in consumption of good xi

Finding the total derivative from the differential Given a function y = f (x1, x2, …, xn) Total differential dy is: Total derivative of y with respect to x2 found by dividing both sides by dx2 (partial total derivative) Finding the total derivative from the differential

Chain rule (kaidah rantai) This is a case of two or more differentiable functions, in which each has a distinct independent variable. where z = f(g(x)), i.e., z = f(y), i.e., z is a function of variable y and y = g(x), i.e., y is a function of variable x If R = f(Q) and if Q = g(L)

z x y Kaidah Rantai t Pohon rantai

Kaidah Rantai Kalau w = w(x,y,z) dan x = x(u,v), y = y(u,v), dan z = z(u,v), maka pohon rantai : w y v z u x

Kalau z = z(x,y), dan x = x(s), y = y(s), dan s = s(u,v), maka pohon rantai menjadi :