Assalamualaikum wr.wb Tugas Uas Logika & Algoritma -Knapsack Problem -Metode Greedy Dosen : Herlawati, S.SI, MM, M,KOM Disusun oleh : Dian Yunita Nim : 11130889 Kelas : 11.1A.04
Tugas 1 KNAPSACK PROBLEM DALAM METODE GREEDY Diketahui bahwa kapasitas M = 30 kg , Dengan jumlah barang n=3 Berat Wi masing-masing barang (W1, W2, W3) = (28, 25, 20) Nilai Pi masing-masing barang (P1, P2, P3) = (38, 34, 25) Pilih barang dengan Nilai Profit Maksimal P1 = … –> X1 = … P2 = … –> X2 = … P3 = … –> X3 = … Pilih barang dengan Berat Minimal W1 = … –> X1 = … W2 = … –> X2 = … W3 = … –>X3 = … Pilih barang dengan menghitung perbandingan yang terbesar dari Profit dibagi Berat (Pi/Wi) yang diurut secara tidak naik, yaitu : P1/W1 = … = … –> X1 = … P2/W2 = … = … –> X2 = … P3/W3 = … = … –> X3 = … Fungsi Pembatas dicari dengan rumus: Tabel berdasarkan elemen dari ke-3 kriteria metode Greedy yaitu: Nilai profit maksimal = ….
Penyelesaian
Penyelesaian : Pilih barang dengan Nilai Profit Maksimal P1 = 38 X1 = 1, dimisalkan sebagai batas atas nilai P2 = 34 X2 = 2/15, dihitung dengan Fungsi Pembatas P3 = 25 X3 = 0, dimisalkan sebagai batas bawah nilai Menyelesaikan fungsi pembatas :
Pilih barang dengan Berat Minimal W1 = 28 X1 = 0, sebagai batas bawah W2 = 25 X2 = 2/5,dihitung dgn Fungsi Pembatas W3 = 20 X3 = 1, sebagai batas atas Menyelesaikan fungsi pembatas :
Menyelesaikan fungsi pembatas : Pilih barang dgn menghitung perbandingan yg terbesar dari Profit dibagi Berat (Pi/Wi) yg diurut secara tidak naik, yaitu : P1/W1 = 38/28 = 1,35 karena terkecil maka X1 = 5/28 P2/W2 = 34/25 = 1,36 karena terbesar maka X2 = 1 P3/W3 = 25/20 = 1,25 dengan Fungsi pembatas X3 = 0 Menyelesaikan fungsi pembatas :
Tabel berdasarkan elemen dari ke-3 kriteria metode Greedy yaitu : Nilai profit maksimal adalah 40.8 diambil dari nilai terbesar. Dengan cara :
Tugas 2 PROBLEMA DAN MODEL GRAPH DALAM METODE GREEDY Contoh: TRAVELLING SALESMAN Untuk menentukan waktu perjalanan seorang salesman seminimal mungkin. Permasalahan: Setiap minggu sekali, seorang petugas kantor telepon berkeliling untuk mengumpulkan coin-coin pada telepon umum yang dipasang diberbagai tempat. Berangkat dari kantornya, ia mendatangi satu demi satu telepon umum tersebut dan akhirnya kembali ke kantor lagi. Masalahnya ia menginginkan suatu rute perjalanan dengan waktu minimal. MODEL GRAPH : Misalnya : Kantor pusat adalah simpul 1 dan misalnya ada 4 telepon umum, yg kita nyatakan sebagai simpul 2, 3, 4 dan 5 dan bilangan pada tiap-tiap ruas menunjukan waktu (dalam menit ) perjalanan antara 2 simpul . Tentukan model graph dengan waktu perjalanan seminimal mungkin.
Penyelesaian
Langkah penyelesain : 1. Dimulai dari simpul yang diibaratkan sebagai kantor pusat yaitu simpul 1. 2. Dari simpul 1 pilih ruas yang memiliki waktu yang minimal. 3. Lakukan terus pada simpul – simpul yang lainnya tepat satu kali yang nantinya Graph akan membentuk Graph tertutup karena perjalanan akan kembali ke kantor pusat. 4. Problema diatas menghasilkan waktu minimalnya adalah 39 menit (6+4+9+8+12) dan diperoleh perjalanan sebagai berikut:
Demikian tugas Logika & Algoritma Knapsack & Metode Greedy